A review of recent developments in the synthesis procedures of lithium iron phosphate powders

被引:385
作者
Jugovic, Dragana [1 ]
Uskokovic, Dragan [1 ]
机构
[1] Serbian Acad Arts & Sci, Inst Tech Sci, Belgrade 11000, Serbia
关键词
Olivine; Lithium iron phosphate (LiFePO(4)); Cathode material; ULTRASONIC SPRAY-PYROLYSIS; SOL-GEL SYNTHESIS; CARBOTHERMAL REDUCTION METHOD; POSITIVE-ELECTRODE MATERIALS; COMPOSITE CATHODE MATERIALS; LIFEPO4 SYNTHESIS ROUTES; CARBON-COATED LIFEPO4; LI-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; HYDROTHERMAL SYNTHESIS;
D O I
10.1016/j.jpowsour.2009.01.074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Olivine structure LiFePO(4) attracted much attention as a promising cathode material for lithium-ion batteries. The overwhelming advantage of iron-based compounds is that, in addition to being inexpensive and naturally abundant, they are less toxic than Co, Ni, and Mn. Its commercial use has already started and there are several companies that base their business on lithium phosphate technology. Still, there is a need for a manufacturing process that produces electrochemically active LiFePO(4) at a low cost. Therefore the interest in developing new approaches to the synthesis of LiFePO(4) did not fade. Here is presented a review of the synthesis procedures used for the production of LiFePO(4) powders along with the highlights of doped and coated derivatives. Apart from already established conventional routes of preparation, numerous alternative procedures are mentioned. (C) 2009 Elsevier B.V. All rights reserved
引用
收藏
页码:538 / 544
页数:7
相关论文
共 99 条
[1]   Magnetic studies of the carbothermal effect on LiFePO4 [J].
Ait-Salah, A ;
Zaghib, K ;
Mauger, A ;
Gendron, F ;
Julien, CM .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (01) :R1-R3
[2]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[3]   Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J].
Arnold, G ;
Garche, J ;
Hemmer, R ;
Ströbele, S ;
Vogler, C ;
Wohlfahrt-Mehrens, A .
JOURNAL OF POWER SOURCES, 2003, 119 :247-251
[4]   Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :A53-A55
[5]   MW-assisted synthesis of LiFePO4 for high power applications [J].
Beninati, Sabina ;
Damen, Libero ;
Mastragostino, Marina .
JOURNAL OF POWER SOURCES, 2008, 180 (02) :875-879
[6]   Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J].
Bewlay, SL ;
Konstantinov, K ;
Wang, GX ;
Dou, SX ;
Liu, HK .
MATERIALS LETTERS, 2004, 58 (11) :1788-1791
[7]   HISTORICAL DEVELOPMENT OF SECONDARY LITHIUM BATTERIES [J].
BRANDT, K .
SOLID STATE IONICS, 1994, 69 (3-4) :173-183
[8]   Synthesis and electrochemical characterization of carbon-coated nanocrystalline LiFePO4 prepared by polyacrylates-pyrolysis route [J].
Cao, Y. L. ;
Yu, L. H. ;
Li, T. ;
Ai, X. P. ;
Yang, H. X. .
JOURNAL OF POWER SOURCES, 2007, 172 (02) :913-918
[9]   The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications [J].
Chen, Jiajun ;
Vacchio, Michael J. ;
Wang, Shijun ;
Chernova, Natalya ;
Zavalij, Peter Y. ;
Whittingham, M. Stanley .
SOLID STATE IONICS, 2008, 178 (31-32) :1676-1693
[10]   Hydrothermal synthesis of cathode materials [J].
Chen, Jiajun ;
Wang, Shijun ;
Whittingham, M. Stanley .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :442-448