1,4-dihydropyridine (DHP) Ca2+ antagonists have recently been shown to block T-type Ca2+ channels, which may render favorable actions on cardiovascular systems. However, this evaluation remains to be done systematically for each T-type Ca2+ channel subtype except for the Ca(v)3.1 (alpha(1G)) subtype. To address this issue at the molecular level, blocking effects of 14 kinds of DHPs; (amlodipine, aranidipine, azelnidipine, barnidipine, benidipine, cilnidipine, efonidipine, felodipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nitrendipine), which are clinically used for treatments of hypertension, on 3 subtypes of T-type Ca2+ channels [Ca(v)3.2 (alpha(1H)), Ca(v)3.3 (alpha(1I)), and Ca(v)3.1 (alpha(1G))] were investigated in the Xenopus oocyte expression system using the two-microelectrode voltage-clamp technique. These 3 kinds (alpha(1H), alpha(1I) and alpha(1G)) of T-type channels were blocked by amloclipine, manidipine and nicardipine. On the other hand, azelnidipine, bamidipine, benidipine and efonidipine significantly blocked alpha(1H) and alpha(1G), but not alpha(1I) channels, while nilvadipine and nimodipine apparently blocked alpha(1H) and alpha(1I), but not alpha(1G) channels. Moreover, aranidipine blocked only alpha(1H) channels. By contrast, cilnidipine, felodipine, nifedipine and nitrendipine had little effects on these subtypes of T-type channels. The result indicates that the blockade of T-type Ca2+ channels by derivatives of DHP Ca2+ antagonist was selective for the channel subtype. Therefore, these selectivities of DHPs in blocking T-type Ca2+ channel subtypes would provide useful pharmacological and clinical information on the mode of action of the drugs including side-effects and adverse effects. (C) 2009 Elsevier B.V. All rights reserved.