Methane Combustion in a 500 Wth Chemical-Looping Combustion System Using an Impregnated Ni-Based Oxygen Carrier

被引:133
作者
Adanez, Juan [1 ]
Dueso, Cristina [1 ]
de Diego, Luis F. [1 ]
Garcia-Labiano, Francisco [1 ]
Gayan, Pilar [1 ]
Abad, Alberto [1 ]
机构
[1] CSIC, Inst Carboquim, Environm & Energy Dept, Zaragoza 50018, Spain
关键词
INHERENT CO2 SEPARATION; NICKEL-OXIDE; IRON-OXIDE; REACTOR SYSTEM; FLUIDIZED-BED; NATURAL-GAS; REDUCTION KINETICS; CARBON DEPOSITION; POWER-GENERATION; SOLID FUELS;
D O I
10.1021/ef8005146
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chemical-looping combustion (CLC) is a promising method for the combustion of fuel gas with CO2 capture and sequestration (CCS). This paper presents the methane combustion results obtained in a continuous CLC prototype using an oxygen carrier containing 18 wt % NiO impregnated on alumina. The design of the CLC prototype was a circulating fluidized bed reactor, consisting of two interconnected fluidized bed reactors, the fuel reactor (FR) and the air reactor (AR). The main operating conditions affecting combustion, such as fuel gas flow, solids circulation rate, and FR temperature, were analyzed. The CLC operation was carried out using methane as fuel gas in the FR with a thermal power between 500 and 850 W-th. The prototype was successfully operated during 100 h, of which 70 h was at combustion conditions. No methane was detected at the FR exit, with CO and H-2 being the unconverted gases. Increasing the temperature in the FR or the solids circulation rates increased the combustion efficiency, reaching efficiency values as high as 99% at temperatures in the range of 1073-1153 K, and a solid inventory in the FR of 600 kg per MWth. The effect of operating conditions on the performance of the oxygen carrier in the CLC prototype was analyzed. During operation of the CLC prototype, no signs of agglomeration or carbon formation were detected and the main properties of particles did not vary. The two different phases in the oxygen carrier, NiO and NiAl2O4, were active to transfer oxygen to the fuel gas. The NiO/NiAl2O4 ratio increased with a decrease in the solids circulation rate, which affected to the reactivity of the oxygen carrier.
引用
收藏
页码:130 / 142
页数:13
相关论文
共 56 条
[1]   The use of iron oxide as oxygen carrier in a chemical-looping reactor [J].
Abad, A. ;
Mattisson, T. ;
Lyngfelt, A. ;
Johansson, M. .
FUEL, 2007, 86 (7-8) :1021-1035
[2]   Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier [J].
Abad, A ;
Mattisson, T ;
Lyngfelt, A ;
Rydén, M .
FUEL, 2006, 85 (09) :1174-1185
[3]   Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion [J].
Abad, Alberto ;
Garcia-Labiano, Francisco ;
de Diego, Luis F. ;
Gayan, Pilar ;
Adanez, Juan .
ENERGY & FUELS, 2007, 21 (04) :1843-1853
[4]   Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion [J].
Abad, Alberto ;
Adanez, Juan ;
Garcia-Labiano, Francisco ;
de Diego, Luis F. ;
Gayan, Pilar ;
Celaya, Javier .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (1-2) :533-549
[5]   Selection of oxygen carriers for chemical-looping combustion [J].
Adánez, J ;
de Diego, LF ;
García-Labiano, F ;
Gayán, P ;
Abad, A ;
Palacios, JM .
ENERGY & FUELS, 2004, 18 (02) :371-377
[6]   Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier:: Effect of operating conditions on methane combustion [J].
Adanez, Juan ;
Gayan, Pilar ;
Celaya, Javier ;
de Diego, Luis F. ;
Garcia-Labiano, Francisco ;
Abad, Alberto .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (17) :6075-6080
[7]   Exergy analysis of chemical-looping combustion systems [J].
Anheden, M ;
Svedberg, G .
ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (16-18) :1967-1980
[8]  
[Anonymous], 2008, Climate Change 2007: Synthesis Report. Contribution of Working Groups I
[9]   Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle [J].
Brandvoll, O ;
Bolland, O .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2004, 126 (02) :316-321
[10]  
Brandvoll O, 2003, CHEM ENG T, V3, P105