Postnatal development of binocular disparity sensitivity in neurons of the primate visual cortex

被引:119
作者
Chino, YM
Smith, EL
Hatta, S
Cheng, H
机构
关键词
postnatal development; binocular disparity; V1; neurons; stereopsis; primates;
D O I
10.1523/JNEUROSCI.17-01-00296.1997
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In macaque monkeys, the age at which neurons in the primary visual cortex (V1) become sensitive to interocular image disparities, a prerequisite for stereopsis, is a matter of conjecture. To resolve this fundamental issue in binocular vision development, we measured the responsiveness of individual V1 neurons in anesthetized and paralyzed infant monkeys as a function of the relative, interocular, spatial phase of dichoptic sine-wave gratings. We found that an adult-like proportion of units were sensitive to interocular image disparity as early as the sixth postnatal day, several weeks before the onset age for stereopsis in monkeys. The ocular dominance distributions of cells in infant monkeys were also indistinguishable from those of adults. Thus, at or only a few days after birth, V1 neurons are capable of combining neural signals from the two eyes as in adults and are sensitive to interocular image disparities. However, the monocular spatial-frequency response properties of these disparity-sensitive units were immature, and their overall responsiveness was far lower than that in adults. During the first 4 postnatal weeks, both the spatial frequency response properties and the peak response amplitude rapidly improved, which resulted in a corresponding increase in the absolute sensitivity of individual units to interocular disparity. The results demonstrate that early binocular vision development in monkeys is not constrained by a paucity of disparity-sensitive V1 neurons but, instead, by the relative immaturity of the spatial response properties and the overall unresponsiveness of existing disparity-sensitive neurons.
引用
收藏
页码:296 / 307
页数:12
相关论文
共 63 条
[1]  
Aslin RN, 1993, EARLY VISUAL DEV NOR, P30
[2]  
Birch E. E., 1993, EARLY VISUAL DEV NOR, P224
[3]   STEREO-ACUITY DEVELOPMENT FOR CROSSED AND UNCROSSED DISPARITIES IN HUMAN INFANTS [J].
BIRCH, EE ;
GWIAZDA, J ;
HELD, R .
VISION RESEARCH, 1982, 22 (05) :507-513
[4]   POSTNATAL-DEVELOPMENT OF VISION IN HUMAN AND NONHUMAN-PRIMATES [J].
BOOTHE, RG ;
DOBSON, V ;
TELLER, DY .
ANNUAL REVIEW OF NEUROSCIENCE, 1985, 8 :495-545
[5]  
BURKHALTER A, 1986, J NEUROSCI, V6, P2327
[6]  
Chino Y. M., 1996, Investigative Ophthalmology and Visual Science, V37, pS424
[7]  
CHINO YM, 1994, J NEUROSCI, V14, P5050
[8]   Orientation in visual cortex: A simple mechanism emerges [J].
Das, A .
NEURON, 1996, 16 (03) :477-480
[9]   DEPTH IS ENCODED IN THE VISUAL-CORTEX BY A SPECIALIZED RECEPTIVE-FIELD STRUCTURE [J].
DEANGELIS, GC ;
OHZAWA, I ;
FREEMAN, RD .
NATURE, 1991, 352 (6331) :156-159
[10]  
ELDRIDGE JL, 1979, J PHYSIOL-LONDON, V295, P1