Rab22a regulates the recycling of membrane proteins internalized independently of clathrin

被引:165
作者
Weigert, R [1 ]
Yeung, AC [1 ]
Li, J [1 ]
Donaldson, JG [1 ]
机构
[1] NHLBI, Cell Biol Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1091/mbc.E04-04-0342
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Plasma membrane proteins that are internalized independently of clathrin, such as major histocompatibility complex class I (MHCI), are internalized in vesicles that fuse with the early endosomes containing clathrin-derived cargo. From there, MHCI is either transported to the late endosome for degradation or is recycled back to the plasma membrane via tubular structures that lack clathrin-dependent recycling cargo, e.g., transferrin. Here, we show that the small GTPase Rab22a is associated with these tubular recycling intermediates containing MHCI. Expression of a dominant negative mutant of Rab22a or small interfering RNA-mediated depletion of Rab22a inhibited both formation of the recycling tubules and MHCI recycling. By contrast, cells expressing the constitutively active mutant of Rab22a exhibited prominent recycling tubules and accumulated vesicles at the periphery, but MHCI recycling was still blocked. These results suggest that Rab22a activation is required for tubule formation and Rab22a inactivation for final fusion of recycling membranes with the surface. The trafficking of transferrin was only modestly affected by these treatments. Dominant negative mutant of Rab11a also inhibited recycling of MHCI but not the formation of recycling tubules, suggesting that Rab22a and Rab11a might coordinate different steps of MHCI recycling.
引用
收藏
页码:3758 / 3770
页数:13
相关论文
共 46 条
[1]   Mechanisms of phagocytosis in macrophages [J].
Aderem, A ;
Underhill, DM .
ANNUAL REVIEW OF IMMUNOLOGY, 1999, 17 :593-623
[2]   Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells [J].
Barbero, P ;
Bittova, L ;
Pfeffer, SR .
JOURNAL OF CELL BIOLOGY, 2002, 156 (03) :511-518
[3]   Signals for sorting of transmembrane proteins to endosomes and lysosomes [J].
Bonifacino, JS ;
Traub, LM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :395-447
[4]   Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic [J].
Brown, FD ;
Rozelle, AL ;
Yin, HL ;
Balla, T ;
Donaldson, JG .
JOURNAL OF CELL BIOLOGY, 2001, 154 (05) :1007-1017
[5]   A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane [J].
Caplan, S ;
Naslavsky, N ;
Hartnell, LM ;
Lodge, R ;
Polishchuk, RS ;
Donaldson, JG ;
Bonifacino, JS .
EMBO JOURNAL, 2002, 21 (11) :2557-2567
[6]   The role of ARF and Rab GTPases in membrane transport [J].
Chavrier, P ;
Goud, B .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (04) :466-475
[7]   Function of Rho family proteins in actin dynamics during phagocytosis and engulfment [J].
Chimini, G ;
Chavrier, P .
NATURE CELL BIOLOGY, 2000, 2 (10) :E191-E196
[8]   Molecular aspects of the endocytic pathway [J].
Clague, MJ .
BIOCHEMICAL JOURNAL, 1998, 336 :271-282
[9]   Regulated portals of entry into the cell [J].
Conner, SD ;
Schmid, SL .
NATURE, 2003, 422 (6927) :37-44
[10]   Rab4 regulates formation of synaptic-like microvesicles from early endosomes in PC12 cells [J].
de Wit, H ;
Lichtenstein, Y ;
Kelly, RB ;
Geuze, HJ ;
Klumperman, J ;
van der Sluijs, P .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (11) :3703-3715