The computational role of dopamine D1 receptors in working memory

被引:196
作者
Durstewitz, D
Seamans, JK
机构
[1] Ruhr Univ Bochum, Fac Psychol, D-44780 Bochum, Germany
[2] Med Univ S Carolina, Inst Neurosci, Charleston, SC 29425 USA
关键词
dopamine; D1; receptor; prefrontal cortex; working memory; persistent activity; biophysical model; NMDA; phase space analysis;
D O I
10.1016/S0893-6080(02)00049-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prefrontal cortex (PFC) is essential for working memory, which is the ability to transiently hold and manipulate information necessary for generating forthcoming action. PFC neurons actively encode working memory information via sustained firing patterns. Dopamine via D1 receptors potently modulates sustained activity of PFC neurons and performance in working memory tasks. In vitro patch-clamp data have revealed many different cellular actions of dopamine on PFC neurons and synapses. These effects were simulated using realistic networks of recurrently connected assemblies of PFC neurons. Simulated D1-mediated modulation led to a deepening and widening of the basins of attraction of high (working memory) activity states of the network, while at the same time background activity was depressed. As a result, self-sustained activity was more robust to distracting stimuli and noise. In this manner, D1 receptor stimulation might regulate the extent to which PFC network activity is focused on a particular goal state versus being open to new goals or information unrelated to the current goal. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:561 / 572
页数:12
相关论文
共 83 条
[1]  
AHN S, 2000, SOC NEUR ABSTR
[2]   Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex [J].
Amit, DJ ;
Brunel, N .
CEREBRAL CORTEX, 1997, 7 (03) :237-252
[3]   LEARNING INTERNAL REPRESENTATIONS IN AN ATTRACTOR NEURAL-NETWORK WITH ANALOG NEURONS [J].
AMIT, DJ ;
BRUNEL, N .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1995, 6 (03) :359-388
[4]   DOPAMINE D-1 RECEPTOR MECHANISMS IN THE COGNITIVE PERFORMANCE OF YOUNG-ADULT AND AGED MONKEYS [J].
ARNSTEN, AFT ;
CAI, JX ;
MURPHY, BL ;
GOLDMANRAKIC, PS .
PSYCHOPHARMACOLOGY, 1994, 116 (02) :143-151
[5]   Cortical remodelling induced by activity of ventral tegmental dopamine neurons [J].
Bao, SW ;
Chan, WT ;
Merzenich, MM .
NATURE, 2001, 412 (6842) :79-83
[6]   Emergent properties of networks of biological signaling pathways [J].
Bhalla, US ;
Iyengar, R .
SCIENCE, 1999, 283 (5400) :381-387
[7]   Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function [J].
Braver, TS ;
Barch, DM ;
Cohen, JD .
BIOLOGICAL PSYCHIATRY, 1999, 46 (03) :312-328
[8]   Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition [J].
Brunel, N ;
Wang, XJ .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2001, 11 (01) :63-85
[9]  
CASS WA, 1995, J NEUROCHEM, V65, P201
[10]   Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades [J].
Chafee, MV ;
Goldman-Rakic, PS .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (03) :1550-1566