Regulation of angiogenesis by glycogen synthase kinase-3β

被引:117
作者
Kim, HS
Skurk, C
Thomas, SR
Bialik, A
Suhara, T
Kureishi, Y
Birnbaum, M
Keaney, JF
Walsh, K
机构
[1] Boston Univ, Sch Med, Whitaker Cardiovasc Inst, Boston, MA 02118 USA
[2] Univ Penn, Sch Med, Howard Hughes Med Inst, Philadelphia, PA 19104 USA
[3] Seoul Natl Univ Hosp, Dept Internal Med, Seoul 110744, South Korea
[4] Tufts Univ, St Elizabeths Med Ctr, Sch Med, Div Cardiovasc Res, Boston, MA 02135 USA
关键词
D O I
10.1074/jbc.M206657200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glycogen synthase kinase-3beta (GSK3beta) plays important roles in metabolism, embryonic development, and tumorigenesis. Here we investigated the role of GSK3beta signaling in vascular biology by examining its function in endothelial cells (ECs). In EC, the regulatory phosphorylation of GSK3beta,6 was found to be under the control of phosphoinositide 3-kinase-, MAPK-, and protein kinase A-dependent signaling pathways. The transduction of a nonphosphorylatable constitutively active mutant of GSKbeta promoted apoptosis under the conditions of prolonged serum deprivation or the disruption of eel matrix attachments. Conversely, the transduction of catalytically inactive GSK3beta promoted EC survival under the conditions of cellular stress. Under normal cell culture conditions, the activation of GSK3beta signaling inhibited the migration of EC to vascular endothelial growth factor or basic fibroblast growth factor. Angiogenesis was inhibited by GSK3beta activation in an in vivo Matrigel plug assay, whereas the inhibition of GSK3beta signaling enhanced capillary formation. These data suggest that GSK3beta functions at the nodal point of converging signaling pathways in EC to regulate vessel growth through its control of vascular cell migration and survival.
引用
收藏
页码:41888 / 41896
页数:9
相关论文
共 27 条
[1]   Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: Induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal [J].
Benjamin, LE ;
Keshet, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (16) :8761-8766
[2]   Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms -: Role of protein kinase A [J].
Boo, YC ;
Sorescu, G ;
Boyd, N ;
Shiojima, L ;
Walsh, K ;
Du, J ;
Jo, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3388-3396
[3]   INTEGRIN ALPHA(V)BETA(3) ANTAGONISTS PROMOTE TUMOR-REGRESSION BY INDUCING APOPTOSIS OF ANGIOGENIC BLOOD-VESSELS [J].
BROOKS, PC ;
MONTGOMERY, AMP ;
ROSENFELD, M ;
REISFELD, RA ;
HU, TH ;
KLIER, G ;
CHERESH, DA .
CELL, 1994, 79 (07) :1157-1164
[4]   The renaissance of GSK3 [J].
Cohen, P ;
Frame, S .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (10) :769-776
[5]   Crystal structure of glycogen synthase kinase 3β:: Structural basis for phosphate-primed substrate specificity and autoinhibition [J].
Dajani, R ;
Fraser, E ;
Roe, SM ;
Young, N ;
Good, V ;
Dale, TC ;
Pearl, LH .
CELL, 2001, 105 (06) :721-732
[6]  
Duplàa C, 1999, CIRC RES, V84, P1433
[7]   Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells [J].
EldarFinkelman, H ;
Argast, GM ;
Foord, O ;
Fischer, EH ;
Krebs, EG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (19) :10228-10233
[8]   GSK3 takes centre stage more than 20 years after its discovery [J].
Frame, S ;
Cohen, P .
BIOCHEMICAL JOURNAL, 2001, 359 (01) :1-16
[9]   Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner [J].
Fujio, Y ;
Walsh, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16349-16354
[10]   Regulation of endothelium-derived nitric oxide production by the protein kinase Akt [J].
Fulton, D ;
Gratton, JP ;
McCabe, TJ ;
Fontana, J ;
Fujio, Y ;
Walsh, K ;
Franke, TF ;
Papapetropoulos, A ;
Sessa, WC .
NATURE, 1999, 399 (6736) :597-601