Non-Euclidean distance measures in AIRS, an artificial immune classification system

被引:17
作者
Hamaker, JS [1 ]
Boggess, L [1 ]
机构
[1] Mississippi State Univ, Dept Comp Sci & Engn, Mississippi State, MS 39762 USA
来源
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2004年
关键词
D O I
10.1109/CEC.2004.1330980
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The AIRS classifier, based on principles derived from resource limited artificial immune systems, performs consistently well over a broad range of classification problems. This paper explores the effects of adding non-Euclidean distance measures to the basic AIRS algorithm using four well-known publicly available classification problems having various proportions of real, discrete, and nominal features.
引用
收藏
页码:1067 / 1073
页数:7
相关论文
共 16 条
[1]  
[Anonymous], UCI REPOSITORY MACHI
[2]  
Bogges L., 2003, P INT ENG SYST ART N, P219
[3]   Learning and optimization using the clonal selection principle [J].
de Castro, LN ;
Von Zuben, FJ .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (03) :239-251
[4]  
Duch W, 2000, LOGICAL RULES EXTRAC
[5]  
DUCH W, 2000, DATASETS CLASSIFICAT
[6]  
GOODMAN D, 2002, ARTIFICIAL NEURAL NE
[7]  
GOODMAN D, 2003, P 2003 INT JOINT C N
[8]  
MARWAH G, 2002, 1 INT C ART IMM SYST, P149
[9]  
Ridgeway G., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P101
[10]   PARALLEL FREE-TEXT SEARCH ON THE CONNECTION MACHINE SYSTEM [J].
STANFILL, C ;
KAHLE, B .
COMMUNICATIONS OF THE ACM, 1986, 29 (12) :1229-1239