Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device

被引:124
作者
Abramson, AR [1 ]
Kim, WC
Huxtable, ST
Yan, HQ
Wu, YY
Majumdar, A
Tien, CL
Yang, PD
机构
[1] Case Western Reserve Univ, Dept Mech & Aerosp Engn, Cleveland, OH 44106 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[3] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
composite; nanowires; thermal conductivity; thermoelectric device;
D O I
10.1109/JMEMS.2004.828742
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discusses the design, fabrication and testing of a novel thermoelectric device comprised of arrays of silicon nanowires embedded in a polymer matrix. By exploiting the low-thermal conductivity of the composite and presumably high-power factor of the nanowires, a thermoelectric figure of merit, higher than the corresponding bulk value, should result. Arrays were first synthesized using a vapor-liquid-solid (VLS) process leading to one-dimensional (1-D) growth of single-crystalline nanowires. To provide structural support while maintaining thermal isolation between nanowires, parylene, a low thermal conductivity and extremely conformal polymer, was embedded within the arrays. Mechanical polishing and oxygen plasma etching techniques were used to expose the nanowire tips and a metal contact was deposited on the top surface. Scanning electron micrographs (SEMs) illustrate the results of the fabrication processes. Using a modification of the 3w technique, the effective thermal conductivity of the nanowire matrix was measured and 1 V characteristics were also demonstrated. An assessment of the suitability of this nanocomposite for high thermoelectric performance devices is given.
引用
收藏
页码:505 / 513
页数:9
相关论文
共 39 条
[1]   Enhancement of thermoelectric power factor in composite thermoelectrics [J].
Bergman, DJ ;
Fel, LG .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (12) :8205-8216
[2]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[3]   Data reduction in 3ω method for thin-film thermal conductivity determination [J].
Borca-Tasciuc, T ;
Kumar, AR ;
Chen, G .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (04) :2139-2147
[4]   THERMAL-CONDUCTIVITY OF ALPHA-SIH THIN-FILMS [J].
CAHILL, DG ;
KATIYAR, M ;
ABELSON, JR .
PHYSICAL REVIEW B, 1994, 50 (09) :6077-6081
[5]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[6]   GROWTH AND SINTERING OF FULLERENE NANOTUBES [J].
COLBERT, DT ;
ZHANG, J ;
MCCLURE, SM ;
NIKOLAEV, P ;
CHEN, Z ;
HAFNER, JH ;
OWENS, DW ;
KOTULA, PG ;
CARTER, CB ;
WEAVER, JH ;
RINZLER, AG ;
SMALLEY, RE .
SCIENCE, 1994, 266 (5188) :1218-1222
[7]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[8]   Phonons in carbon nanotubes [J].
Dresselhaus, MS ;
Eklund, PC .
ADVANCES IN PHYSICS, 2000, 49 (06) :705-814
[9]   Low-dimensional thermoelectric materials [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Sun, X ;
Zhang, Z ;
Cronin, SB ;
Koga, T .
PHYSICS OF THE SOLID STATE, 1999, 41 (05) :679-682
[10]   Bismuth nanowire arrays: Synthesis and galvanomagnetic properties [J].
Heremans, J ;
Thrush, CM ;
Lin, YM ;
Cronin, S ;
Zhang, Z ;
Dresselhaus, MS ;
Mansfield, JF .
PHYSICAL REVIEW B, 2000, 61 (04) :2921-2930