The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes:: evidence from the starlet sea anemone, Nematostella vectensis

被引:139
作者
Ryan, Joseph F.
Burton, Patrick M.
Mazza, Maureen E.
Kwong, Grace K.
Mullikin, James C.
Finnerty, John R.
机构
[1] Boston Univ, Bioinformat Program, Boston, MA 02215 USA
[2] NHGRI, Bethesda, MD 20892 USA
[3] Boston Univ, Dept Biol, Boston, MA 02215 USA
关键词
D O I
10.1186/gb-2006-7-7-r64
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Homeodomain transcription factors are key components in the developmental toolkits of animals. While this gene superclass predates the evolutionary split between animals, plants, and fungi, many homeobox genes appear unique to animals. The origin of particular homeobox genes may, therefore, be associated with the evolution of particular animal traits. Here we report the first near-complete set of homeodomains from a basal (diploblastic) animal. Results: Phylogenetic analyses were performed on 130 homeodomains from the sequenced genome of the sea anemone Nematostella vectensis along with 228 homeodomains from human and 97 homeodomains from Drosophila. The Nematostella homeodomains appear to be distributed among established homeodomain classes in the following fashion: 72 ANTP class; one HNF class; four LIM class; five POU class; 33 PRD class; five SINE class; and six TALE class. For four of the Nematostella homeodomains, there is disagreement between neighbor-joining and Bayesian trees regarding their class membership. A putative Nematostella CUT class gene is also identified. Conclusion: The homeodomain superclass underwent extensive radiations prior to the evolutionary split between Cnidaria and Bilateria. Fifty-six homeodomain families found in human and/or fruit fly are also found in Nematostella, though seventeen families shared by human and fly appear absent in Nematostella. Homeodomain loss is also apparent in the bilaterian taxa: eight homeodomain families shared by Drosophila and Nematostella appear absent from human (CG13424, EMXLX, HOMEOBRAIN, MSXLX, NK7, REPO, ROUGH, and UNC4), and six homeodomain families shared by human and Nematostella appear absent from fruit fly (ALX, DMBX, DUX, HNF, POUI, and VAX).
引用
收藏
页数:20
相关论文
共 104 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]  
[Anonymous], 1997, EMBnet News
[3]  
[Anonymous], 2004, ORIGIN PHYLA
[4]   Crustacean appendage evolution associated with changes in Hox gene expression [J].
Averof, M ;
Patel, NH .
NATURE, 1997, 388 (6643) :682-686
[5]   The Homeodomain Resource: 2003 update [J].
Banerjee-Basu, S ;
Moreland, T ;
Hsu, BJ ;
Trout, KL ;
Baxevanis, AD .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :304-306
[6]   Molecular evolution of the homeodomain family of transcription factors [J].
Banerjee-Basu, S ;
Baxevanis, AD .
NUCLEIC ACIDS RESEARCH, 2001, 29 (15) :3258-3269
[7]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[8]   sine oculis in basal Metazoa [J].
Bebenek, IG ;
Gates, RD ;
Morris, J ;
Hartenstein, V ;
Jacobs, DK .
DEVELOPMENT GENES AND EVOLUTION, 2004, 214 (07) :342-351
[9]   Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa? [J].
Bharathan, G ;
Janssen, BJ ;
Kellogg, EA ;
Sinha, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (25) :13749-13753
[10]   PRIMARY STRUCTURE AND EXPRESSION OF A PRODUCT FROM CUT, A LOCUS INVOLVED IN SPECIFYING SENSORY ORGAN IDENTITY IN DROSOPHILA [J].
BLOCHLINGER, K ;
BODMER, R ;
JACK, J ;
JAN, LY ;
JAN, YN .
NATURE, 1988, 333 (6174) :629-635