Calcium microdomains and oxidative stress

被引:75
作者
Davidson, Sean M.
Duchen, Michael R.
机构
[1] Royal Free & Univ Coll, Sch Med, Hatter Cardiovasc Inst, Dept Med, London WC1E 6HX, England
[2] UCL, Dept Physiol, London WC1E 6BT, England
[3] UCL, Mitochondrial Biol Grp, London WC1E 6BT, England
关键词
calcium; oxidative stress; ROS;
D O I
10.1016/j.ceca.2006.08.017
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The phenomenon of calcium microdomains is firmly established in the field of subcellular physiology. These regions of localized, transient calcium increase are exemplified by the spontaneous 'sparks' released through the ryanodine receptor in myocytes, but include subplasmalemmal microdomains, focal calcium oscillations and microdomains enclosed within organelles, such as the endoplasmic reticulum, golgi and mitochondria. Increasing evidence suggests that oxidative stress regulates both the formation and disappearance of microdomains. Calcium release channels and transporters are all modulated by redox state, while several mechanisms that generate oxidative or nitrosative stress are regulated by calcium. Here, we discuss the evidence for the regulation of calcium microdomains by redox state, and, by way of example, demonstrate that the frequency of calcium sparks in cardiomyocytes is increased in response to oxidative stress. We consider the evidence for the existence of analogous microdomains of reactive oxygen and nitrogen species and suggest that the refinement of imaging techniques for these species might lead to similar concepts. The interaction between Ca2+ microdomains and proteins that modulate their formation results in a complex and dynamic, spatial signaling mechanism, which is likely to be broadly applicable to different cell types, adding new dimensions to the calcium signaling 'toolkit'. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:561 / 574
页数:14
相关论文
共 114 条
[1]   Expression and modulation of an NADPH oxidase in mammalian astrocytes [J].
Abramov, AY ;
Jacobson, J ;
Wientjes, F ;
Hothersall, J ;
Canevari, L ;
Duchen, MR .
JOURNAL OF NEUROSCIENCE, 2005, 25 (40) :9176-9184
[2]   Calcium signals induced by amylold β peptide and their consequences in neurons and astrocytes in culture [J].
Abramov, AY ;
Canevari, L ;
Duchen, MR .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2004, 1742 (1-3) :81-87
[3]   β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase [J].
Abramov, AY ;
Canevari, L ;
Duchen, MR .
JOURNAL OF NEUROSCIENCE, 2004, 24 (02) :565-575
[4]   RETRACTED: The large-conductance Ca2+-activated K+ channel is essential for innate immunity (Retracted article. See vol. 468, 2010) [J].
Ahluwalia, J ;
Tinker, A ;
Clapp, LH ;
Duchen, MR ;
Abramov, AY ;
Pope, S ;
Nobles, M ;
Segal, AW .
NATURE, 2004, 427 (6977) :853-858
[5]   RANGE OF MESSENGER ACTION OF CALCIUM-ION AND INOSITOL 1,4,5-TRISPHOSPHATE [J].
ALLBRITTON, NL ;
MEYER, T ;
STRYER, L .
SCIENCE, 1992, 258 (5089) :1812-1815
[6]  
Andrews M, 2006, MT SINAI J MED, V73, P482
[7]   Mitochondrial metabolism of reactive oxygen species [J].
Andreyev, AI ;
Kushnareva, YE ;
Starkov, AA .
BIOCHEMISTRY-MOSCOW, 2005, 70 (02) :200-214
[8]   Mitochondrial participation in the intracellular Ca2+ network [J].
Babcock, DF ;
Herrington, J ;
Goodwin, PC ;
Park, YB ;
Hille, B .
JOURNAL OF CELL BIOLOGY, 1997, 136 (04) :833-844
[9]   Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart [J].
Belke, DD ;
Swanson, EA ;
Dillmann, WH .
DIABETES, 2004, 53 (12) :3201-3208
[10]   Genetically encoded fluorescent indicator for intracellular hydrogen peroxide [J].
Belousov, VV ;
Fradkov, AF ;
Lukyanov, KA ;
Staroverov, DB ;
Shakhbazov, KS ;
Terskikh, AV ;
Lukyanov, S .
NATURE METHODS, 2006, 3 (04) :281-286