Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6

被引:35
作者
Feng, HZ
An, FY
Zhang, SZ
Ji, ZD
Ling, HQ
Zuo, JR [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Genom, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Cell & Chromosome Engn, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
关键词
D O I
10.1104/pp.105.074138
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Iron is an essential element for almost all living organisms, actively involved in a variety of cellular activities. To acquire iron from soil, strategy I plants such as Arabidopsis (Arabidopsis thaliana) must first reduce ferric to ferrous iron by Fe(III)-chelate reductases (FROs). FRO genes display distinctive expression patterns in several plant species. However, regulation of FRO genes is not well understood. Here, we report a systematic characterization of the AtFRO6 expression during plant growth and development. AtFRO6, encoding a putative FRO, is specifically expressed in green-aerial tissues in a light-dependent manner. Analysis of mutant promoter-beta-glucuronidase reporter genes in transgenic Arabidopsis plants revealed the presence of multiple light-responsive elements in the AtFRO6 promoter. These light-responsive elements may act synergistically to confer light responsiveness to the AtFRO6 promoter. Moreover, no AtFRO6 expression was detected in dedifferentiated green calli of the korrigan1-2 (kor1-2) mutant or undifferentiated calli derived from wild-type explants. Conversely, AtFRO6 is expressed in redifferentiated kor1-2 shoot-like structures and differentiating calli of wild-type explants. In addition, AtFRO7, but not AtFRO5 and AtFRO8, also shows a reduced expression level in kor1-2 green calli. These results suggest that whereas photosynthesis is necessary but not sufficient, both light and cell differentiation are necessary for AtFRO6 expression. We propose that AtFRO6 expression is light regulated in a tissue-or cell differentiation-specific manner to facilitate the acquisition of iron in response to distinctive developmental cues.
引用
收藏
页码:1345 / 1354
页数:10
相关论文
共 54 条
[1]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[2]  
BRUGGEMANN W, 1993, PLANTA, V190, P151, DOI 10.1007/BF00196606
[3]   Global and hormone-induced gene expression changes during shoot development in Arabidopsis [J].
Che, P ;
Gingerich, DJ ;
Lall, S ;
Howell, SH .
PLANT CELL, 2002, 14 (11) :2771-2785
[4]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[5]   Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate [J].
Cody, GD ;
Boctor, NZ ;
Filley, TR ;
Hazen, RM ;
Scott, JH ;
Sharma, A ;
Yoder, HS .
SCIENCE, 2000, 289 (5483) :1337-1340
[6]   The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response [J].
Colangelo, EP ;
Guerinot, ML .
PLANT CELL, 2004, 16 (12) :3400-3412
[7]   Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation [J].
Connolly, EL ;
Fett, JP ;
Guerinot, ML .
PLANT CELL, 2002, 14 (06) :1347-1357
[8]   Involvement of NRAMP1 from Arabidopsis thaliana in iron transport [J].
Curie, C ;
Alonso, JM ;
Le Jean, M ;
Ecker, JR ;
Briat, JF .
BIOCHEMICAL JOURNAL, 2000, 347 (pt 3) :749-755
[9]   GENETIC-EVIDENCE THAT FERRIC REDUCTASE IS REQUIRED FOR IRON UPTAKE IN SACCHAROMYCES-CEREVISIAE [J].
DANCIS, A ;
KLAUSNER, RD ;
HINNEBUSCH, AG ;
BARRIOCANAL, JG .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (05) :2294-2301
[10]   BINDING OF A PEA NUCLEAR-PROTEIN TO PROMOTERS OF CERTAIN PHOTOREGULATED GENES IS MODULATED BY PHOSPHORYLATION [J].
DATTA, N ;
CASHMORE, AR .
PLANT CELL, 1989, 1 (11) :1069-1077