Relation between native ensembles and experimental structures of proteins

被引:120
作者
Best, Robert B.
Lindorff-Larsen, Kresten
DePristo, Mark A.
Vendruscolo, Michele
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ Copenhagen, Dept Biochem, Inst Mol Biol & Physiol, DK-2100 Copenhagen O, Denmark
[3] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
关键词
NMR order parameters; protein dynamics; residual dipolar couplings;
D O I
10.1073/pnas.0511156103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of "high-sequence similarity Protein Data Bank" (HSP) structures and consider the extent to which such ensembles represent the structural heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest that even a modest number of structures of a protein determined under different conditions, or with small variations in sequence, capture a representative subset of the true native-state ensemble.
引用
收藏
页码:10901 / 10906
页数:6
相关论文
共 53 条
[1]  
[Anonymous], 1987, Introduction to Modern Statistical Mechanics
[2]   Dipolar couplings in macromolecular structure determination [J].
Bax, A ;
Kontaxis, G ;
Tjandra, N .
NUCLEAR MAGNETIC RESONANCE OF BIOLOGICAL MACROMOLECULES, PT B, 2001, 339 :127-174
[3]   The Protein Data Bank [J].
Berman, HM ;
Battistuz, T ;
Bhat, TN ;
Bluhm, WF ;
Bourne, PE ;
Burkhardt, K ;
Iype, L ;
Jain, S ;
Fagan, P ;
Marvin, J ;
Padilla, D ;
Ravichandran, V ;
Schneider, B ;
Thanki, N ;
Weissig, H ;
Westbrook, JD ;
Zardecki, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :899-907
[4]   What contributions to protein side-chain dynamics are probed by NMR experiments? A molecular dynamics simulation analysis [J].
Best, RB ;
Clarke, J ;
Karplus, M .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 349 (01) :185-203
[5]   The origin of protein sidechain order parameter distributions [J].
Best, RB ;
Clarke, J ;
Karplus, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) :7734-7735
[6]   Hydrophobic core fluidity of homologous protein domains: Relation of side-chain dynamics to core composition and packing [J].
Best, RB ;
Rutherford, TJ ;
Freund, SMV ;
Clarke, J .
BIOCHEMISTRY, 2004, 43 (05) :1145-1155
[7]   CONFORMATIONAL VARIABILITY OF SOLUTION NUCLEAR-MAGNETIC-RESONANCE STRUCTURES [J].
BONVIN, AMJJ ;
BRUNGER, AT .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 250 (01) :80-93
[8]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[9]   Internal and overall peptide group motion in proteins: molecular dynamics simulations for lysozyme compared with results from X-ray and NMR spectroscopy [J].
Buck, M ;
Karplus, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (41) :9645-9658
[10]   Developing a dynamic pharmacophore model for HIV-1 integrase [J].
Carlson, HA ;
Masukawa, KM ;
Rubins, K ;
Bushman, FD ;
Jorgensen, WL ;
Lins, RD ;
Briggs, JM ;
McCammon, JA .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (11) :2100-2114