Heterochromatic deposition of centromeric histone H3-like proteins

被引:246
作者
Henikoff, S
Ahmad, K
Platero, JS
van Steensel, B
机构
[1] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
[2] Howard Hughes Med Inst, Seattle, WA 98109 USA
关键词
centromeres; heterochromatin; Drosophila;
D O I
10.1073/pnas.97.2.716
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Centromeres of most organisms are embedded within constitutive heterochromatin, the condensed regions of chromosomes that account for a large fraction of complex genomes. The functional significance of this centromere-heterochromatin relationship, if any, is unknown. One possibility is that heterochromatin provides a suitable environment for assembly of centromere components, such as special centromeric nucleosomes that contain distinctive histone H3-like proteins. We describe a Drosophila H3-like protein, Cid (for centromere identifier) that localizes exclusively to fly centromeres. When the cid upstream region drives expression of H3 and H2B histone-green fluorescent protein fusion genes in Drosophila cells, euchromatin-specific deposition results. Remarkably, when the cid upstream region drives expression of yeast, worm, and human centromeric histone-green fluorescent protein fusion proteins, localization is preferentially within Drosophila pericentric heterochromatin. Heterochromatin-specific localization also was seen for yeast and worm centromeric proteins constitutively expressed in human cells. Preferential localization to heterochromatin in heterologous systems is unexpected if centromere-specific or site-specific factors determine H3-like protein localization to centromeres. Rather, the heterochromatic state itself may help localize centromeric components.
引用
收藏
页码:716 / 721
页数:6
相关论文
共 40 条
  • [1] ALMEIDA A, 1993, HUM GENET, V91, P538
  • [2] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [3] Sequence analysis of an 80 kb human neocentromere
    Barry, AE
    Howman, EV
    Cancilla, MR
    Saffery, R
    Choo, KHA
    [J]. HUMAN MOLECULAR GENETICS, 1999, 8 (02) : 217 - 227
  • [4] DISSECTING THE CENTROMERE OF THE HUMAN Y-CHROMOSOME WITH CLONED TELOMERIC DNA
    BROWN, KE
    BARNETT, MA
    BURGTORF, C
    SHAW, P
    BUCKLE, VJ
    BROWN, WRA
    [J]. HUMAN MOLECULAR GENETICS, 1994, 3 (08) : 1227 - 1237
  • [5] CENTROMERE ACTIVATION
    BROWN, W
    TYLERSMITH, C
    [J]. TRENDS IN GENETICS, 1995, 11 (09) : 337 - 339
  • [6] BUCHWITZ JG, 1999, NATURE, V401, P547
  • [7] TRANSFORMATION TECHNIQUES FOR DROSOPHILA CELL-LINES
    CHERBAS, L
    MOSS, R
    CHERBAS, P
    [J]. METHODS IN CELL BIOLOGY, VOL 44, 1994, 44 : 161 - 179
  • [8] A HUMAN TELOMERIC PROTEIN
    CHONG, L
    VANSTEENSEL, B
    BROCCOLI, D
    ERDJUMENTBROMAGE, H
    HANISH, J
    TEMPST, P
    DELANGE, T
    [J]. SCIENCE, 1995, 270 (5242) : 1663 - 1667
  • [9] Choo KHA, 1998, NAT GENET, V18, P3
  • [10] Something from nothing: The evolution and utility of satellite repeats
    Csink, AK
    Henikoff, S
    [J]. TRENDS IN GENETICS, 1998, 14 (05) : 200 - 204