A molecular level explanation of the density maximum of liquid water from computer simulations with a polarizable potential model

被引:32
作者
Jedlovszky, P [1 ]
Mezei, M
Vallauri, R
机构
[1] NYU, Mt Sinai Sch Med, Dept Physiol & Biophys, New York, NY 10029 USA
[2] Univ Trent, Ist Nazl Fis Mat, I-38050 Trento, Italy
[3] Univ Trent, Dipartimento Fis, I-38050 Trento, Italy
关键词
D O I
10.1016/S0009-2614(00)00002-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Differences in the structure of water are investigated on the basis of a recent set of Monte Carlo simulations with a polarizable water model at temperatures corresponding to the same density below and above the density maximum. The simulations reproduced well the experimental differential pair correlation function of the molecular centers and its running coordination number. It is shown that with increasing temperature an increasing number of molecules leaves the tetrahedral hydrogen-bonded network. These interstitial molecules are located in the cavities of the tetrahedral network of the other molecules, forming closely packed structural units with their neighbours. The effect of the increasing number of these closely packed patches on the density of the system can compensate the increasing thermal motion of the molecules up to a certain point. These two opposite effects are shown to be responsible for the appearance of the density maximum of liquid water at 277 K. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 35 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   EXISTENCE OF A DENSITY MAXIMUM IN EXTENDED SIMPLE POINT-CHARGE WATER [J].
BAEZ, LA ;
CLANCY, P .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (11) :9837-9840
[3]   The effects of pressure on structural and dynamical properties of associated liquids: Molecular dynamics calculations for the extended simple point charge model of water [J].
Bagchi, K ;
Balasubramanian, S ;
Klein, ML .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (20) :8561-8567
[4]   MONTE-CARLO STUDIES OF DIELECTRIC PROPERTIES OF WATER-LIKE MODELS [J].
BARKER, JA ;
WATTS, RO .
MOLECULAR PHYSICS, 1973, 26 (03) :789-792
[5]  
Berendsen H., 1981, INTERMOLECULAR FORCE, V331, P331, DOI [DOI 10.1007/978-94-015-7658-1_21, 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658]
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]   ISOCHORIC TEMPERATURE DIFFERENTIAL OF THE X-RAY STRUCTURE FACTOR AND STRUCTURAL REARRANGEMENTS IN LOW-TEMPERATURE HEAVY-WATER [J].
BOSIO, L ;
CHEN, SH ;
TEIXEIRA, J .
PHYSICAL REVIEW A, 1983, 27 (03) :1468-1475
[8]   PARAMETERIZING A POLARIZABLE INTERMOLECULAR POTENTIAL FOR WATER [J].
BRODHOLT, J ;
SAMPOLI, M ;
VALLAURI, R .
MOLECULAR PHYSICS, 1995, 86 (01) :149-158
[9]   A new order parameter for tetrahedral configurations [J].
Chau, PL ;
Hardwick, AJ .
MOLECULAR PHYSICS, 1998, 93 (03) :511-518
[10]   Understanding all of water's anomalies with a nonlocal potential [J].
Cho, CH ;
Singh, S ;
Robinson, GW .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (19) :7979-7988