Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions

被引:68
作者
Benson, HY [1 ]
Vanderbei, RJ
Shanno, DF
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Rutgers State Univ, New Brunswick, NJ 08903 USA
基金
美国国家科学基金会;
关键词
interior-point methods; nonconvex optimization; nonlinear programming; filter methods;
D O I
10.1023/A:1020533003783
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recently, Fletcher and Leyffer proposed using filter methods instead of a merit function to control steplengths in a sequential quadratic programming algorithm. In this paper, we analyze possible ways to implement a filter-based approach in an interior-point algorithm. Extensive numerical testing shows that such an approach is more efficient than using a merit function alone.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 11 条
[1]  
CONN AR, CONSTRAINED UNCONSTR
[2]  
Dolan ED, 2001, BENCHMARKING OPTIMIZ
[3]  
Fiacco A.V., 1990, Nonlinear Programming Sequential Unconstrained Minimization Techniques
[4]  
FLETCHER R, 1997, NA171 U DUND DEP MAT
[5]  
Fourer R, 1993, AMPL MODELING LANGUA
[6]  
SCHITTKOWSKI K, 1987, MORE TEST SAMPLES NO
[7]   Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods [J].
Shanno, DF ;
Vanderbei, RJ .
MATHEMATICAL PROGRAMMING, 2000, 87 (02) :303-316
[8]  
SHANNO DF, 2000, 0006 ORFE PRINC U DE
[9]   LOQO: An interior point code for quadratic programming [J].
Vanderbei, RJ .
OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4) :451-484
[10]   An interior-point algorithm for nonconvex nonlinear programming [J].
Vanderbei, RJ ;
Shanno, DF .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 13 (1-3) :231-252