Adaptive integration for multi-factor portfolio credit loss models

被引:2
作者
Huang, Xinzheng [1 ,2 ]
Oosterlee, Cornelis W. [1 ,3 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands
[2] Rabobank, Grp Risk Management, NL-3521 CB Utrecht, Netherlands
[3] Natl Res Inst Math & Comp Sci, CWI, NL-1098 SJ Amsterdam, Netherlands
关键词
Adaptive integration; Genz-Malik rule; Monte Carlo; Credit portfolio loss; ALGORITHM;
D O I
10.1016/j.cam.2009.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose algorithms of adaptive integration for calculation of the tail probability in multi-factor credit portfolio loss models. We first modify the classical Genz-Malik rule, a deterministic multiple integration rule suitable for portfolio credit models with number of factors less than 8. Later on we arrive at the adaptive Monte Carlo integration, which essentially replaces the deterministic integration rule by antithetic random numbers. The latter call not only handle higher-dimensional models but is also able to provide reliable probabilistic error bounds. Both algorithms are asymptotic convergent and consistently outperform the plain Monte Carlo method. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:506 / 516
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 1997, CreditMetrics-Technical Document
[2]  
Antonov I. A., 1979, USSR Computational Mathematics and Mathematical Physics, V19, P252, DOI [10.1016/0041-5553(79)90085-5, DOI 10.1016/0041-5553(79)90085-5]
[3]   AN ADAPTIVE ALGORITHM FOR THE APPROXIMATE CALCULATION OF MULTIPLE INTEGRALS [J].
BERNTSEN, J ;
ESPELID, TO ;
GENZ, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (04) :437-451
[4]   PRACTICAL ERROR ESTIMATION IN ADAPTIVE MULTIDIMENSIONAL QUADRATURE ROUTINES [J].
BERNTSEN, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 25 (03) :327-340
[5]  
Dooren PV., 1976, Journal of Computational and Applied Mathematics, V2, P207, DOI [DOI 10.1016/0771-050X(76)90005-X, 10.1016/0771-050X(76)90005-X]
[6]   Subregion-adaptive integration of functions having a dominant peak [J].
Genz, A ;
Kass, RE .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1997, 6 (01) :92-111
[7]  
GENZ A, 1984, TOOLS METHODS LANGUA, P208
[8]  
Genz A.C., 1980, Comput. Appl. Math., V6, P295, DOI [10.1016/0771-050X(80)90039-X, DOI 10.1016/0771-050X(80)90039-X]
[9]  
GLASSERMAN P, 2007, FAST SIMULATION MULT
[10]  
LEPAGE GP, 1978, J COMPUT PHYS, V27, P192