Benchmark Dose Analysis via Nonparametric Regression Modeling

被引:22
作者
Piegorsch, Walter W. [1 ,2 ,4 ]
Xiong, Hui [3 ]
Bhattacharya, Rabi N. [1 ,4 ]
Lin, Lizhen [5 ]
机构
[1] Univ Arizona, Program Stat, Tucson, AZ 85721 USA
[2] Univ Arizona, Inst BIO5, Tucson, AZ 85721 USA
[3] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[4] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[5] Duke Univ, Dept Stat Sci, Durham, NC USA
关键词
Benchmark analysis; BMD; BMDL; bootstrap confidence limits; dose-response analysis; isotonic regression; toxicological risk assessment; BOOTSTRAP CONFIDENCE-INTERVALS; ENVIRONMENTAL RISK-ASSESSMENT; ANIMAL CARCINOGENICITY; QUANTAL BIOASSAY; UNCERTAINTY; INFORMATION; LIMITS; DESIGN;
D O I
10.1111/risa.12066
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Estimation of benchmark doses (BMDs) in quantitative risk assessment traditionally is based upon parametric dose-response modeling. It is a well-known concern, however, that if the chosen parametric model is uncertain and/or misspecified, inaccurate and possibly unsafe low-dose inferences can result. We describe a nonparametric approach for estimating BMDs with quantal-response data based on an isotonic regression method, and also study use of corresponding, nonparametric, bootstrap-based confidence limits for the BMD. We explore the confidence limits' small-sample properties via a simulation study, and illustrate the calculations with an example from cancer risk assessment. It is seen that this nonparametric approach can provide a useful alternative for BMD estimation when faced with the problem of parametric model uncertainty.
引用
收藏
页码:135 / 151
页数:17
相关论文
共 55 条
[1]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[2]   AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION [J].
AYER, M ;
BRUNK, HD ;
EWING, GM ;
REID, WT ;
SILVERMAN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (04) :641-647
[3]   Model uncertainty and risk estimation for experimental studies of quantal responses [J].
Bailer, AJ ;
Noble, RB ;
Wheeler, MW .
RISK ANALYSIS, 2005, 25 (02) :291-299
[4]   ESTIMATING UPPER CONFIDENCE-LIMITS FOR EXTRA RISK IN QUANTAL MULTISTAGE MODELS [J].
BAILER, AJ ;
SMITH, RJ .
RISK ANALYSIS, 1994, 14 (06) :1001-1010
[5]   Consistency and asymptotic normality of the estimated effective doses in bioassay [J].
Bhattacharya, Rabi ;
Kong, Maiying .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) :643-658
[6]  
Bhattacharya R, 2011, SANKHYA SER B, V73, P144, DOI 10.1007/s13571-011-0019-7
[7]   An adaptive nonparametric method in benchmark analysis for bioassay and environmental studies [J].
Bhattacharya, Rabi ;
Lin, Lizhen .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) :1947-1953
[8]   A semiparametric approach to risk assessment for quantitative outcomes [J].
Bosch, RJ ;
Wypij, D ;
Ryan, LM .
RISK ANALYSIS, 1996, 16 (05) :657-665
[9]  
Buckley Brooke E, 2008, Stat Methodol, V5, P209, DOI 10.1016/j.stamet.2007.08.001
[10]   Confidence limits on one-stage model parameters in benchmark risk assessment [J].
Buckley, Brooke E. ;
Piegorsch, Walter W. ;
West, R. Webster .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2009, 16 (01) :53-62