Scaling dynamics of a massive piston in a cube filled with ideal gas: Exact results

被引:15
作者
Chernov, N
Lebowitz, JL
Sinai, Y
机构
[1] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
piston; ideal gas; hydrodynamic limit;
D O I
10.1023/A:1020402312727
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We continue the study of the time evolution of a system consisting of a piston in a cubical container of large size L filled with an ideal gas. The piston has mass M similar to L-2 and undergoes elastic collisions with N similar to L-3 gas particles of mass m. In a previous paper, Lebowitz et al.((1)) considered a scaling regime, with time and space scaled by L, in which they argued heuristically that the motion of the piston and the one particle distribution of the gas satisfy autonomous coupled differential equations. Here we state exact results and sketch proofs for this behavior.
引用
收藏
页码:529 / 548
页数:20
相关论文
共 12 条
[1]  
CAGLIOTI E, UNPUB
[2]  
CHENROV N, DYNAMIC MASSIVE PIST
[3]   A MECHANICAL MODEL OF BROWNIAN-MOTION [J].
DURR, D ;
GOLDSTEIN, S ;
LEBOWITZ, JL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :507-530
[4]   On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states [J].
Gruber, C ;
Frachebourg, L .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 272 (3-4) :392-428
[5]   Stationary motion of the adiabatic piston [J].
Gruber, C ;
Piasecki, J .
PHYSICA A, 1999, 268 (3-4) :412-423
[6]  
Gruber C., 1999, European Journal of Physics, V20, P259, DOI 10.1088/0143-0807/20/4/303
[7]   MOTION OF A HEAVY PARTICLE IN AN INFINITE ONE DIMENSIONAL GAS OF HARD SPHERES [J].
HOLLEY, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (03) :181-&
[8]   The "adiabatic" piston: And yet it moves [J].
Kestemont, E ;
Van den Broeck, C ;
Mansour, MM .
EUROPHYSICS LETTERS, 2000, 49 (02) :143-149
[9]  
Kolmogorov A.N., 1961, Amer. Math. Soc. Transl., V17, P277
[10]   STATIONARY NONEQUILIBRIUM GIBBSIAN ENSEMBLES [J].
LEBOWITZ, JL .
PHYSICAL REVIEW, 1959, 114 (05) :1192-1202