Effects of Solvent Additives on Morphology, Charge Generation, Transport, and Recombination in Solution-Processed Small-Molecule Solar Cells

被引:191
作者
Kyaw, Aung Ko Ko [1 ]
Wang, Dong Hwan [1 ,3 ]
Luo, Chan [1 ,2 ]
Cao, Yong [2 ]
Thuc-Quyen Nguyen [1 ]
Bazan, Guillermo C. [1 ]
Heeger, Alan J. [1 ]
机构
[1] Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Santa Barbara, CA 93106 USA
[2] S China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[3] Chung Ang Univ, Sch Integrat Engn, Seoul 156756, South Korea
基金
美国国家科学基金会;
关键词
POLYMER PHOTOVOLTAIC CELLS; NANOSCALE PHASE-SEPARATION; INTERPENETRATING NETWORK; EFFICIENCY; PERFORMANCE; POLY(3-HEXYLTHIOPHENE); METHANOFULLERENE; NANOMORPHOLOGY; PHOTOCURRENT; ACCEPTOR;
D O I
10.1002/aenm.201301469
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of solvent additive (1,8-diiodooctane (DIO)) on the morphology, charge generation, transport, and recombination in solution-processed small-molecule solar cells are studied and these parameters are correlated with device performance. In the optimum nanoscale morphology, which is processed with 0.4% DIO, the phase separation is large enough to create a percolating pathway for carrier transport, yet still small enough to form large interfacial area for efficient charge separation. Complete phase separation in this film reduces the interfacial defects, which occurs without DIO, and hence suppresses the monomolecular recombination. Moreover, balanced charge transport and weak bimolecular recombination lead to a high fill factor (72%). On the other hand, an excess amount of DIO (0.8%) in the solvent results in the over-aggregation of the donor phase, which disturbs the percolating pathway of the acceptor phase and reduces the electron mobility. The over-aggregation of the donor phase also shrinks the interfacial area for charge separation and consequently reduces the photocurrent generation.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Toward a rational design of poly(2,7-carbazole) derivatives for solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Gendron, David ;
Wakim, Salem ;
Blair, Emily ;
Neagu-Plesu, Rodica ;
Belletete, Michel ;
Durocher, Gilles ;
Tao, Ye ;
Leclerc, Mario .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (02) :732-742
[2]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P374, DOI 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO
[3]  
2-W
[4]   Fast-Grown Interpenetrating Network in Poly(3-hexylthiophene): Methanofullerenes Solar Cells Processed with Additive [J].
Chen, Hsiang-Yu ;
Yang, Hoichang ;
Yang, Guanwen ;
Sista, Srinivas ;
Zadoyan, Ruben ;
Li, Gang ;
Yang, Yang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (18) :7946-7953
[5]   REGIOCONTROLLED SYNTHESIS OF POLY(3-ALKYLTHIOPHENES) MEDIATED BY RIEKE ZINC - THEIR CHARACTERIZATION AND SOLID-STATE PROPERTIES [J].
CHEN, TA ;
WU, XM ;
RIEKE, RD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (01) :233-244
[6]   Transient photoconductivity in polymer bulk heterojunction solar cells: Competition between sweep-out and recombination [J].
Cowan, Sarah R. ;
Street, R. A. ;
Cho, Shinuk ;
Heeger, A. J. .
PHYSICAL REVIEW B, 2011, 83 (03)
[7]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[8]   The path to ubiquitous and low-cost organic electronic appliances on plastic [J].
Forrest, SR .
NATURE, 2004, 428 (6986) :911-918
[9]   ELECTRON-HOLE RECOMBINATION IN GERMANIUM [J].
HALL, RN .
PHYSICAL REVIEW, 1952, 87 (02) :387-387
[10]   Indene-C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells [J].
He, Youjun ;
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (04) :1377-1382