Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum

被引:96
作者
Gehlen, J
Panstruga, R
Smets, H
Merkelbach, S
Kleines, M
Porsch, P
Fladung, M
Becker, I
Rademacher, T
Hausler, RE
Hirsch, HJ
机构
[1] RHEIN WESTFAL TH AACHEN,INST BIOL BOT MOL GENET 1,D-52074 AACHEN,GERMANY
[2] MAX PLANCK INST ZUCHTUNGSFORSCH,D-50829 COLOGNE,GERMANY
[3] UNIV COLOGNE,INST BOT,D-50931 COLOGNE,GERMANY
关键词
Corynebacterium glutamicum; Escherichia coli; Flaveria trinervia; overexpression; photosynthesis;
D O I
10.1007/BF00020481
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphoenolpyruvate carboxylase (PEPC) genes from Corynebacterium glutamicum (eppc), Escherichia coli (eppc) or Flaveria trinervia (fppc) were transferred to Solanum tuberosum. Plant regenerants producing foreign PEPC were identified by Western blot analysis. Maximum PEPC activities measured in eppc and fppc plants grown in the greenhouse were doubled compared to control plants. For cppc a transgenic plant line could be selected which exhibited a fourfold increase in PEPC activity. In the presence of acetyl-CoA, a known activator of the procaryotic PEPC, a sixfold higher activity level was observed. In cppc plants grown in axenic culture PEPC activities were even higher. There was a 6-fold or 12-fold increase in the PEPC activities compared to the controls measured in the absence or presence of acetyl-CoA, respectively. Comparable results were obtained by transient expression in Nicotiana tabacum protoplasts. PEPC of C. glutamicum (PEPC C.g.) in S. tuberosum leaf extracts displays its characteristic K-m (PEP) value. Plant growth was examined with plants showing high expression of PEPC and, moreover, with a plant cell line expressing an antisense S. tuberosum (anti-sppc) gene. In axenic culture the growth rate of a cppc plant cell line was appreciably diminished, whereas growth rates of an anti-sppc line were similar or slightly higher than in controls. Malate levels were increased in cppc plants and decreased in antisense plants. There were no significant differences in photosynthetic electron transport or steady state CO2 assimilation between control plants and transformants overexpressing PEPC C.g. or anti-sppc plants. However, a prolonged dark treatment resulted in a delayed induction of photosynthetic electron transport in plants with less PEPC. Rates of CO2 release in the dark determined after a 45 min illumination period at a high proton flux density were considerably enhanced in cppc plants and slightly diminished in anti-sppc plants. When CO2 assimilation rates were corrected for estimated rates of mitochondrial respiration in the light, the electron requirement for CO2 assimilation determined in low CO2 was slightly lower in transformants with higher PEPC, whereas transformants with decreased PEPC exhibited an appreciably elevated electron requirement. The CO2 compensation point remained unchanged in plants (cppc) with high PEPC activity, but might be increased in an antisense plant cell line. Stomatal opening was delayed in antisense plants, but was accelerated in plants overexpressing PEPC C.g. compared to the controls.
引用
收藏
页码:831 / 848
页数:18
相关论文
共 59 条
[1]   HIGHER-PLANT PHOSPHOENOLPYRUVATE CARBOXYLASE - STRUCTURE AND REGULATION [J].
ANDREO, CS ;
GONZALEZ, DH ;
IGLESIAS, AA .
FEBS LETTERS, 1987, 213 (01) :1-8
[2]  
ANDREWS M, 1986, PLANT CELL ENVIRON, V9, P511, DOI 10.1111/1365-3040.ep11616228
[3]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[4]   REGULATORY PHOSPHORYLATION OF SORGHUM LEAF PHOSPHOENOLPYRUVATE CARBOXYLASE - IDENTIFICATION OF THE PROTEIN-SERINE KINASE AND SOME ELEMENTS OF THE SIGNAL-TRANSDUCTION CASCADE [J].
BAKRIM, N ;
ECHEVARRIA, C ;
CRETIN, C ;
ARRIODUPONT, M ;
PIERRE, JN ;
VIDAL, J ;
CHOLLET, R ;
GADAL, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 204 (02) :821-830
[5]  
BANDURSKI RS, 1953, J BIOL CHEM, V204, P781
[6]  
BERGMEYER HU, 1974, METHODEN ENZYMATISCH, P1491
[7]   THE SHORT-TERM EFFECT OF NO3- AND NH3 ASSIMILATION ON SUCROSE SYNTHESIS IN LEAVES [J].
CHAMPIGNY, ML ;
BRAUER, M ;
BISMUTH, E ;
MANH, CT ;
SIEGL, G ;
QUY, LV ;
STITT, M .
JOURNAL OF PLANT PHYSIOLOGY, 1992, 139 (03) :361-368
[8]  
Cooley Brent, 1994, Plant Physiology (Rockville), V105, P84
[9]   PHOTOINHIBITION AND ZEAXANTHIN FORMATION IN INTACT LEAVES - A POSSIBLE ROLE OF THE XANTHOPHYLL CYCLE IN THE DISSIPATION OF EXCESS LIGHT ENERGY [J].
DEMMIG, B ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC .
PLANT PHYSIOLOGY, 1987, 84 (02) :218-224
[10]   IN-VIVO REGULATION OF WHEAT-LEAF PHOSPHOENOLPYRUVATE CARBOXYLASE BY REVERSIBLE PHOSPHORYLATION [J].
DUFF, SMG ;
CHOLLET, R .
PLANT PHYSIOLOGY, 1995, 107 (03) :775-782