Holonomic quantum computation

被引:829
作者
Zanardi, P [1 ]
Rasetti, M
机构
[1] Ist Nazl Fis Mat, I-16152 Genoa, Italy
[2] Inst Sci Interchange Fdn, I-10133 Turin, Italy
[3] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
关键词
D O I
10.1016/S0375-9601(99)00803-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the notion of generalized Berry phase i.e., non-abelian holonomy, can be used for enabling quantum computation. The computational space is realized by a n-fold degenerate eigenspace of a family of Hamiltonians parametrized by a manifold M. The point of M represents classical configuration of control fields and, for multi-partite systems, couplings between subsystem. Adiabatic loops in the control M induce non trivial unitary transformations on the computational space. For a generic system it is shown that this mechanism allows for universal quantum computation by composing a generic pair of loops in M. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 11 条
[1]  
Bott R., 1965, ACTA MATH, V114, P71
[2]  
DEMLER E, CONDMAT9805404
[3]   UNIVERSALITY IN QUANTUM COMPUTATION [J].
DEUTSCH, D ;
BARENCO, A ;
EKERT, A .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937) :669-677
[4]  
DIVINCENZO D, 1995, PHYS REV A, V50, P1015
[5]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261
[6]   ALMOST ANY QUANTUM LOGIC GATE IS UNIVERSAL [J].
LLOYD, S .
PHYSICAL REVIEW LETTERS, 1995, 75 (02) :346-349
[7]   Geometric phase, bundle classification, and group representation [J].
Mostafazadeh, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) :1218-1233
[8]  
Nakahara M., 1990, Graduate Stu dent Series in Physics
[9]  
Shapere A., 1989, Geometric Phases in Physics
[10]   Quantum computing [J].
Steane, A .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (02) :117-173