Microcapsules filled with reactive solutions for self-healing materials

被引:366
作者
Blaiszik, B. J. [2 ]
Caruso, M. M. [3 ]
McIlroy, D. A. [1 ]
Moore, J. S. [1 ,3 ,5 ]
White, S. R. [4 ,5 ]
Sottos, N. R. [1 ,2 ,5 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
Autonomic materials; Self-healing; Microcapsules; POLYAMIDE MICROCAPSULES; CONTROLLED-RELEASE; EPOXY; NANOCAPSULES;
D O I
10.1016/j.polymer.2008.12.040
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Microcapsules containing a solvent and reactive epoxy resin are a critical component for the development of cost-effective, low toxicity, and low flammability self-healing materials. We report a robust in situ encapsulation method for protection of a variety of oil soluble solvents and reactive epoxy resins surrounded by a thin, polymeric, urea-formaldehyde (UF) shell. Resin-solvent capsules are produced in high yield with diameters ranging from 10 to 300 mu m by controlling agitation rates. These capsules have a continuous inner shell wall and a rough exterior wall that promotes bonding to a polymer matrix. Capsules as small as 300 nm in diameter are achieved through sonication and stabilization procedures. The presence of both the epoxy resin and solvent core components is confirmed by differential scanning calorimetry, (DSC) measurements, and the relative amount of epoxy and solvent in the liquid core is determined by thermogravimetric analysis (TGA). The capsules are shown to satisfy the requirements for use in self-healing materials including processing survivability, thermal stability, and efficient in situ rupture for delivery of healing agent. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:990 / 997
页数:8
相关论文
共 40 条
[1]  
[Anonymous], 2003, GREE CHEM
[2]  
BANK M, 1973, MOD PLAST, V50, P84
[3]  
Benita S., 2005, Micro-encapsulation: Methods and Industrial Applications, Second Edition, 2nd Edition, V2nd
[4]   Nanocapsules for self-healing materials [J].
Blaiszik, B. J. ;
Sottos, N. R. ;
White, S. R. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (3-4) :978-986
[5]  
Bocanegra R, 2005, J FOOD SCI, V70, pE492, DOI 10.1111/j.1365-2621.2005.tb11520.x
[6]   In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene [J].
Brown, EN ;
Kessler, MR ;
Sottos, NR ;
White, SR .
JOURNAL OF MICROENCAPSULATION, 2003, 20 (06) :719-730
[7]   Fracture testing of a self-healing polymer composite [J].
E. N. Brown ;
N. R. Sottos ;
S. R. White .
Experimental Mechanics, 2002, 42 (4) :372-379
[8]   Full recovery of fracture toughness using a nontoxic solvent-based self-healing system [J].
Caruso, Mary M. ;
Blaiszik, Benjamin J. ;
White, Scott R. ;
Sottos, Nancy R. ;
Moore, Jeffrey S. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (13) :1898-1904
[9]   Solvent-promoted self-healing epoxy materials [J].
Caruso, Mary M. ;
Delafuente, David A. ;
Ho, Victor ;
Sottos, Nancy R. ;
Moore, Jeffrey S. ;
White, Scott R. .
MACROMOLECULES, 2007, 40 (25) :8830-8832
[10]   Polydimethylsiloxane-based self-healing materials [J].
Cho, SH ;
Andersson, HM ;
White, SR ;
Sottos, NR ;
Braun, PV .
ADVANCED MATERIALS, 2006, 18 (08) :997-+