BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles

被引:234
作者
Mikhaylova, M [1 ]
Kim, DK
Berry, CC
Zagorodni, A
Toprak, M
Curtis, ASG
Muhammed, M
机构
[1] Royal Inst Technol, Mat Chem Div, SE-10044 Stockholm, Sweden
[2] Univ Glasgow, Inst Biomed & Life Sci, Ctr Cell Engn, Glasgow G12 8QQ, Lanark, Scotland
关键词
D O I
10.1021/cm0348904
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Immobilization of bovine serum albumin (BSA) on surface-modified superparamagnetic iron oxide nanoparticles (SPION) has been performed by two different double-step immobilization approaches. The first approach consists of preparation of SPION by controlled chemical coprecipitation in the presence of BSA solution, whereas the second approach includes preliminary surface modification of SPION with an amine group using a coupling agent of 3-aminepropyltrimethoxysilane (APTMS). Both procedures are followed by 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide hydrochloride (EDC) activation with sequential immobilization of the layer of BSA. Additionally, an attempt to modify the surface of SPION with amine and carboxylic groups is undertaken by using L-aspartic acid (LAA). TEM shows that the particle size varies in the range 10-15 nm and does not change significantly after the coating process. The presence of BSA and amine groups on the surface of SPION is confirmed by FT-IR. Magnetic properties are investigated by VSM and results indicate that the superparamagnetic properties are retained for BSA-coated SPION while reducing the value of saturation magnetization (M-s). The binding capacity is estimated from thermo-gravimetric and chemical analyse;. APTMS-coated SPION show higher BSA binding capacity compared to that of coprecipitated SPION in the presence of BSA. In vitro tests have been performed after the functionalization of SPION with LAA and BSA. Human dermal fibroblasts are incubated with the surface-modified SPION for 6 and 24 h to observe cell behavior, morphology, cytoskeletal organization, and interactions between cell and SPION. BSA-coated SPION incubated with cells demonstrated a cell response similar to that of control cells, with no adverse cell damage and no endocytosis, whereas LAA-coated SPION show partial endocytosis without cytoskeletal disorganization.
引用
收藏
页码:2344 / 2354
页数:11
相关论文
共 40 条
[1]  
BERRY C, 2002, J PHYS D, V35, pR1
[2]   Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro [J].
Berry, CC ;
Wells, S ;
Charles, S ;
Curtis, ASG .
BIOMATERIALS, 2003, 24 (25) :4551-4557
[3]   Grain size and blocking distributions in fine particle iron oxide nanoparticles [J].
Blanco-Mantecón, M ;
O'Grady, K .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 203 :50-53
[4]   Adsorption of 3-mercaptopropyltrimethoxysilane and 3-aminopropyltrimethoxysilane at platinum electrodes [J].
Brito, R ;
Rodríguez, VA ;
Figueroa, J ;
Cabrera, CR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 520 (1-2) :47-52
[5]   Polyethylene magnetic nanoparticle: a new magnetic material for biomedical applications [J].
Chatterjee, J ;
Haik, Y ;
Chen, CJ .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 246 (03) :382-391
[6]   Preparation and characterization of YADH-bound magnetic nanoparticles [J].
Chen, DH ;
Liao, MH .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2002, 16 (5-6) :283-291
[7]   Synthesis of nickel nanoparticles in water-in-oil microemulsions [J].
Chen, DH ;
Wu, SH .
CHEMISTRY OF MATERIALS, 2000, 12 (05) :1354-1360
[8]   FTIR/ATR for protein adsorption to biomaterial surfaces [J].
Chittur, KK .
BIOMATERIALS, 1998, 19 (4-5) :357-369
[9]   Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles [J].
Gómez-Lopera, SA ;
Plaza, RC ;
Delgado, AV .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 240 (01) :40-47
[10]   Protective coating of superparamagnetic iron oxide nanoparticles [J].
Kim, DK ;
Mikhaylova, M ;
Zhang, Y ;
Muhammed, M .
CHEMISTRY OF MATERIALS, 2003, 15 (08) :1617-1627