Self-similar space-filling packings in three dimensions

被引:20
作者
Baram, RM [1 ]
Herrmann, HJ [1 ]
机构
[1] Univ Stuttgart, Inst Computat Phys, D-70569 Stuttgart, Germany
关键词
packing of spheres; apollonian packing; self-similar packing; space-filling packing;
D O I
10.1142/S0218348X04002549
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop an algorithm to construct new self-similar space-filling packings of spheres. Each topologically different configuration is characterized by its own fractal dimension. We also find the first bichromatic packing known up to now.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 8 条
[1]   Space-filling bearings in three dimensions [J].
Baram, RM ;
Herrmann, HJ ;
Rivier, N .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4
[2]   THE FRACTAL DIMENSION OF THE APOLLONIAN SPHERE PACKING [J].
Borkovec, M. ;
De Paris, W. ;
Peikert, R. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1994, 2 (04) :521-526
[3]   RESIDUAL SET DIMENSION OF APOLLONIAN PACKING [J].
BOYD, DW .
MATHEMATIKA, 1973, 20 (40) :170-174
[4]   OSCULATORY PACKING OF A 3 DIMENSIONAL SPHERE [J].
BOYD, DW .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (02) :303-322
[5]  
BOYD DW, 1982, MATH COMPUT, V396, P249
[6]   SPACE-FILLING BEARINGS [J].
HERRMANN, HJ ;
MANTICA, G ;
BESSIS, D .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3223-3226
[7]  
Mandelbrot B., 1982, The fractual geometry of nature
[8]   Generalization of space-filling bearings to arbitrary loop size [J].
Oron, G ;
Herrmann, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (07) :1417-1434