A microfluidic electrochemical device for high sensitivity biosensing: Detection of nanomolar hydrogen peroxide

被引:63
作者
Chikkaveeraiah, Bhaskara V. [1 ]
Liu, Hongyun [1 ,3 ]
Mani, Vigneshwaran [1 ]
Papadimitrakopoulos, Fotios [1 ]
Rusling, James F. [1 ,2 ,4 ]
机构
[1] Univ Connecticut, Inst Mat Sci, Dept Chem, Storrs, CT 06269 USA
[2] Univ Connecticut, Ctr Hlth, Farmington, CT 06032 USA
[3] Beijing Normal Univ, Dept Chem, Beijing 100875, Peoples R China
[4] Natl Univ Ireland, Sch Chem, Galway, Ireland
基金
爱尔兰科学基金会;
关键词
Microfluidics; Biosensor; H2O2; Electrocatalysis; Direct electron transfer; MICROCHIP; DIFFUSION; IMMUNOASSAY; VOLTAMMETRY; FABRICATION; SEPARATION; INJECTION; SYSTEMS; SURFACE;
D O I
10.1016/j.elecom.2009.02.002
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report herein a simple device for rapid biosensing consisting of a single microfluidic channel made from poly(dimethylsiloxane) (PDMS) coupled to an injector, and incorporating a biocatalytic sensing electrode, reference and counter electrodes. The sensing electrode was a gold wire coated with 5 nm glutathione-decorated gold nanoparticles (AuNPs). Sensitive detection of H2O2 based on direct bioelectrocatalysis by horseradish peroxidase (HRP) was used for evaluation. HRP was covalently linked the glutathione-AuNPs. This electrode presented quasi-reversible cyclic voltammetry peaks at -0.01 V vs. Ag/AgCl at pH 6.5 for the HRP heme Fe-III/Fe-II couple. Direct electrochemical activity of HRP was used to detect H2O2 at high sensitivity with a detection limit of 5 nM in an unmediated system. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:819 / 822
页数:4
相关论文
共 35 条
[1]   A BIODYNAMIC MICROSYSTEM FOR FLUIDS VISCOSITY MEASUREMENTS [J].
Avram, Andrei Marius ;
Avram, Marioara ;
Bragaru, Adina ;
Vasilco, Roxana ;
Iliescu, Ciprian .
INTERNATIONAL MEMS CONFERENCE 2006, 2006, 34 :82-88
[2]   Microfluidic immunosensor systems [J].
Bange, A ;
Halsall, HB ;
Heineman, WR .
BIOSENSORS & BIOELECTRONICS, 2005, 20 (12) :2488-2503
[3]   Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor [J].
Boxshall, K ;
Wu, MH ;
Cui, Z ;
Cui, ZF ;
Watts, JF ;
Baker, MA .
SURFACE AND INTERFACE ANALYSIS, 2006, 38 (04) :198-201
[4]   Gray-scale photolithography using microfluidic photomasks [J].
Chen, CC ;
Hirdes, D ;
Folch, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (04) :1499-1504
[5]   Diffusion coefficient measurements in microfluidic devices [J].
Culbertson, CT ;
Jacobson, SC ;
Ramsey, JM .
TALANTA, 2002, 56 (02) :365-373
[6]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[7]   Microfluidic immunoassays as rapid saliva-based clinical diagnostics [J].
Herr, Amy E. ;
Hatch, Anson V. ;
Throckmorton, Daniel J. ;
Tran, Huu M. ;
Brennan, James S. ;
Giannobile, William V. ;
Singh, Anup K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (13) :5268-5273
[8]   Fast and sensitive DNA analysis using changes in the FRET signals of molecular beacons in a PDMS microfluidic channel [J].
Jung, Jaehyun ;
Chen, Lingxin ;
Lee, Sangyup ;
Kim, Sungyong ;
Seong, Gi Hun ;
Choo, Jaebum ;
Lee, Eun Kyu ;
Oh, Chil-Hwan ;
Lee, Sanghoon .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 387 (08) :2609-2615
[9]   Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor [J].
Kamholz, AE ;
Weigl, BH ;
Finlayson, BA ;
Yager, P .
ANALYTICAL CHEMISTRY, 1999, 71 (23) :5340-5347
[10]   Optical measurement of transverse molecular diffusion in a microchannel [J].
Kamholz, AE ;
Schilling, EA ;
Yager, P .
BIOPHYSICAL JOURNAL, 2001, 80 (04) :1967-1972