Regulation of cell surface GLUT4 in skeletal muscle of transgenic mice

被引:22
作者
Brozinick, JT [1 ]
McCoid, SC [1 ]
Reynolds, TH [1 ]
Wilson, CM [1 ]
Stevenson, RW [1 ]
Cushman, SW [1 ]
Gibbs, EM [1 ]
机构
[1] PFIZER INC,PFIZER CENT RES,GROTON,CT 06340
关键词
D O I
10.1042/bj3210075
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Marked overexpression of the glucose transporter GLUT4 in skeletal muscle membrane fractions of GLUT4 transgenic (TG) mice is accompanied by disproportionately small increases in basal and insulin-stimulated glucose transport activity. Thus we have assessed cell surface GLUT4 by photolabelling with the membrane-impermeant reagent 2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis(D-mannos-4-yloxy) (ATB-BMPA) and measured the corresponding glucose transport activity using 2-deoxyglucose in isolated extensor digitorum longus (EDL) muscles from non-transgenic (NTG) and GLUT4 TG mice in the absence and presence of 13.3 nM (2000 mu units/ml) insulin, without or with hypoxia as a model of muscle contraction. TG mice displayed elevated rates of glucose trans port activity under basal and insulin-stimulated conditions, and in the presence of insulin plus hypoxia, compared with NTG mice. Photoaffinity labelling of cell surface GLUT4 indicated corresponding elevations in plasma membrane GLUT4 in the basal and insulin-stimulated states, and with insulin plus hypoxia, but no difference in cell surface GLUT4 during hypoxia stimulation. Subcellular fractionation of hindlimb muscles confirmed the previously observed 3-fold overexpression of GLUT4 in the TG compared with the NTG mice. These results suggest that: (1) alterations in glucose transport activity which occur with GLUT4 overexpression in EDL muscles are directly related to cell surface GLUT4 content, regardless of the levels observed in the corresponding subcellular membrane fractions, (2) while overexpression of GLUT4 influences both basal and insulin-stimulated glucose transport activity, the response to hypoxia/contraction-stimulated glucose transport is unchanged, and (3) subcellular fractionation provides little insight into the subcellular trafficking of GLUT4, and whatever relationship is demonstrated in EDL muscles from NTG mice is disrupted on GLUT4 overexpression.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 28 条
[1]  
BANKS EA, 1992, AM J PHYSIOL, V263, pE1010
[2]   SODIUM-CALCIUM EXCHANGE AND SIDEDNESS OF ISOLATED CARDIAC SARCOLEMMAL VESICLES [J].
BERS, DM ;
PHILIPSON, KD ;
NISHIMOTO, AY .
BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 601 (02) :358-371
[3]   CONTRACTION-ACTIVATED GLUCOSE-UPTAKE IS NORMAL IN INSULIN-RESISTANT MUSCLE OF THE OBESE ZUCKER RAT [J].
BROZINICK, JT ;
ETGEN, GJ ;
YASPELKIS, BB ;
IVY, JL .
JOURNAL OF APPLIED PHYSIOLOGY, 1992, 73 (01) :382-387
[4]   Glucose transport and GLUT4 protein distribution in skeletal muscle of GLUT4 transgenic mice [J].
Brozinick, JT ;
Yaspelkis, BB ;
Wilson, CM ;
Grant, KE ;
Gibbs, M ;
Cushman, SW ;
Ivy, JL .
BIOCHEMICAL JOURNAL, 1996, 313 :133-140
[5]   THE EFFECTS OF MUSCLE-CONTRACTION AND INSULIN ON GLUCOSE-TRANSPORTER TRANSLOCATION IN RAT SKELETAL-MUSCLE [J].
BROZINICK, JT ;
ETGEN, GJ ;
YASPELKIS, BB ;
IVY, JL .
BIOCHEMICAL JOURNAL, 1994, 297 :539-545
[6]   EFFECTS OF EXERCISE TRAINING ON MUSCLE GLUT-4 PROTEIN-CONTENT AND TRANSLOCATION IN OBESE ZUCKER RATS [J].
BROZINICK, JT ;
ETGEN, GJ ;
YASPELKIS, BB ;
KANG, HY ;
IVY, JL .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 265 (03) :E419-E427
[7]   INSULIN ACTION ON WHOLE-BODY GLUCOSE-UTILIZATION AND ON MUSCLE GLUCOSE-TRANSPORTER TRANSLOCATION IN MICE [J].
DEEMS, RO ;
DEACON, RW ;
RAMLAL, T ;
VOLCHUK, A ;
KLIP, A ;
YOUNG, DA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1994, 199 (02) :662-670
[8]   ROLE OF TRANSVERSE TUBULES IN INSULIN-STIMULATED MUSCLE GLUCOSE-TRANSPORT [J].
DOHM, GL ;
DOLAN, PL ;
FRISELL, WR ;
DUDEK, RW .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1993, 52 (01) :1-7
[9]   EXERCISE-INDUCED INCREASE IN GLUCOSE TRANSPORTERS IN PLASMA-MEMBRANES OF RAT SKELETAL-MUSCLE [J].
DOUEN, AG ;
RAMLAL, T ;
KLIP, A ;
YOUNG, DA ;
CARTEE, GD ;
HOLLOSZY, JO .
ENDOCRINOLOGY, 1989, 124 (01) :449-454
[10]   EXERCISE MODULATES THE INSULIN-INDUCED TRANSLOCATION OF GLUCOSE TRANSPORTERS IN RAT SKELETAL-MUSCLE [J].
DOUEN, AG ;
RAMLAL, T ;
CARTEE, GD ;
KLIP, A .
FEBS LETTERS, 1990, 261 (02) :256-260