Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA) to assess eukaryotic picoplankton composition

被引:96
作者
Not, F
Simon, N
Biegala, IC
Vaulot, D
机构
[1] CNRS, Biol Stn, CNRS, UMR 7127, F-29680 Roscoff, France
[2] Univ Paris 06, F-29680 Roscoff, France
关键词
fluorescent in situ hybridization; tyramide signal amplification; picoplankton; eukaryotes; coastal waters; diversity;
D O I
10.3354/ame028157
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Photosynthetic picoeukaryotes (phytoplankton cells with a diameter smaller than 2 to 3 mum) contribute significantly to both biomass and primary production in the oligotrophic open ocean and coastal waters, at certain times of the year. The identification of these organisms is difficult because of their small size and simple morphology, therefore hindering detailed ecological studies of their distribution and role, In this paper, we demonstrate the use of oligonucleotide probes specific to algal classes or to lower order taxa in combination with fluorescent in situ hybridization and tyramide signal amplification (FISH-TSA) to determine eukaryotic picophytoplankton diversity, Target cells were detected and enumerated using epifluorescence microscopy. The sensitivity of the technique and the specificity of the probes were tested on pure and mixed picoplanktonic strains, as well as on natural samples from the English Channel. In these samples, the community was dominated by cells belonging to the division Chlorophyta. Haptophyta, Bolidophyceae and Pelagophyceae were also detected at low abundance. The FISH-TSA method is readily applicable to the study of picoplankton diversity in natural communities.
引用
收藏
页码:157 / 166
页数:10
相关论文
共 51 条
[1]   Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology [J].
Amann, R ;
Ludwig, W .
FEMS MICROBIOLOGY REVIEWS, 2000, 24 (05) :555-565
[2]  
Amann R. I., MOL MICROBIAL ECOLOG, P1
[3]   IDENTIFICATION OF INDIVIDUAL PROKARYOTIC CELLS BY USING ENZYME-LABELED, RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES [J].
AMANN, RI ;
ZARDA, B ;
STAHL, DA ;
SCHLEIFER, KH .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (09) :3007-3011
[4]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[5]   ULTRASTRUCTURE AND 18S RIBOSOMAL-RNA GENE SEQUENCE FOR PELAGOMONAS-CALCEOLATA GEN ET SP-NOV AND THE DESCRIPTION OF A NEW ALGAL CLASS, THE PELAGOPHYCEAE CLASSIS NOV [J].
ANDERSEN, RA ;
SAUNDERS, GW ;
PASKIND, MP ;
SEXTON, JP .
JOURNAL OF PHYCOLOGY, 1993, 29 (05) :701-715
[6]   A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans [J].
Andersen, RA ;
Bidigare, RR ;
Keller, MD ;
Latasa, M .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1996, 43 (2-3) :517-537
[7]  
[Anonymous], 1999, CURR PROTOC CYTOM, DOI DOI 10.1002/0471142956.CY1111-10
[8]   Bacterial rhodopsin:: Evidence for a new type of phototrophy in the sea [J].
Béjà, O ;
Aravind, L ;
Koonin, EV ;
Suzuki, MT ;
Hadd, A ;
Nguyen, LP ;
Jovanovich, S ;
Gates, CM ;
Feldman, RA ;
Spudich, JL ;
Spudich, EN ;
DeLong, EF .
SCIENCE, 2000, 289 (5486) :1902-1906
[9]   Identification of bacteria associated with dinoflagellates (Dinophyceae) Alexandrium spp. using tyramide signal amplification-fluorescent in situ hybridization and confocal microscopy [J].
Biegala, IC ;
Kennaway, G ;
Alverca, E ;
Lennon, JF ;
Vaulot, D ;
Simon, N .
JOURNAL OF PHYCOLOGY, 2002, 38 (02) :404-411
[10]   Biofilm community structure in polluted rivers:: Abundance of dominant phylogenetic groups over a complete annual cycle [J].
Brümmer, IHM ;
Fehr, W ;
Wagner-Döbler, I .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (07) :3078-3082