Diverse mechanisms for CO2 effects on grassland litter decomposition

被引:38
作者
Dukes, JS [1 ]
Field, CB
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
[2] Carnegie Inst Washington, Dept Plant Biol, Stanford, CA 94305 USA
关键词
California; decomposition; elevated CO2; global change; grassland; litter quality; nitrogen;
D O I
10.1046/j.1365-2486.2000.00292.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The ongoing increase in atmospheric CO2 concentration ([CO2]) can potentially alter litter decomposition rates by changing: (i) the litter quality of individual species, (ii) allocation patterns of individual species, (iii) the species composition of ecosystems (which could alter ecosystem-level litter quality and allocation), (iv) patterns of soil moisture, and (v) the composition and size of microbial communities. To determine the relative importance of these mechanisms in a California annual grassland, we created four mixtures of litter that differed in species composition (the annual legume Lotus wrangelianus Fischer & C. Meyer comprised either 10% or 40% of the initial mass) and atmospheric [CO2] during growth (ambient or double-ambient). These mixtures decomposed for 33 weeks at three positions (above, on, and below the soil surface) in four types of grassland microcosms (fertilized and unfertilized microcosms exposed to elevated or ambient [CO2]) and at a common field site. Initially, legume-rich litter mixtures had higher nitrogen concentrations ([N]) than legume-poor mixtures. In most positions and environments, the different litter mixtures decomposed at approximately the same rate. Fertilization and CO2 enrichment of microcosms had no effect on mass loss of litter within them. However, mass loss was strongly related to litter position in both microcosms and the field. Nitrogen dynamics of litter were significantly related to the initial [N] of litter on the soil surface, but not in other positions. We conclude that changes in allocation patterns and species composition are likely to be the dominant mechanisms through which ecosystem-level decomposition rates respond to increasing atmospheric [CO2].
引用
收藏
页码:145 / 154
页数:10
相关论文
共 35 条
[1]   Immunoenrichment of urinary S-phenylmercapturic acid [J].
Ball, L ;
Wright, AS ;
vanSittert, NJ ;
Aston, P .
BIOMARKERS, 1997, 2 (01) :29-33
[2]   Effect of elevated atmospheric carbon dioxide and open-top chambers on transpiration in a tallgrass prairie [J].
Bremer, DJ ;
Ham, JM ;
Owensby, CE .
JOURNAL OF ENVIRONMENTAL QUALITY, 1996, 25 (04) :691-701
[3]   Effects of CO2 and nutrient enrichment on tissue quality of two California annuals [J].
Chu, CC ;
Field, CB ;
Mooney, HA .
OECOLOGIA, 1996, 107 (04) :433-440
[4]   TESTING A LINEAR RELATION AMONG VARIANCES [J].
COCHRAN, WG .
BIOMETRICS, 1951, 7 (01) :17-32
[5]   EFFECTS OF ENHANCED ATMOSPHERIC CO2 AND NUTRIENT SUPPLY ON THE QUALITY AND SUBSEQUENT DECOMPOSITION OF FINE ROOTS OF BETULA-PENDULA ROTH AND PICEA-SITCHENSIS (BONG) CARR [J].
COTRUFO, ME ;
INESON, P .
PLANT AND SOIL, 1995, 170 (02) :267-277
[6]   DECOMPOSITION OF TREE LEAF LITTERS GROWN UNDER ELEVATED CO2 - EFFECT OF LITTER QUALITY [J].
COTRUFO, MF ;
INESON, P ;
ROWLAND, AP .
PLANT AND SOIL, 1994, 163 (01) :121-130
[7]   INCREASED ATMOSPHERIC CO2 AND LITTER QUALITY - DECOMPOSITION OF SWEET CHESTNUT LEAF LITTER WITH ANIMAL FOOD WEBS OF DIFFERENT COMPLEXITIES [J].
COUTEAUX, MM ;
MOUSSEAU, M ;
CELERIER, ML ;
BOTTNER, P .
OIKOS, 1991, 61 (01) :54-64
[8]   DECOMPOSITION OF GRASSES IN NAIROBI-NATIONAL-PARK, KENYA [J].
DESHMUKH, I .
OECOLOGIA, 1985, 67 (01) :147-149
[9]   EVIDENCE OF A FEEDBACK MECHANISM LIMITING PLANT-RESPONSE TO ELEVATED CARBON-DIOXIDE [J].
DIAZ, S ;
GRIME, JP ;
HARRIS, J ;
MCPHERSON, E .
NATURE, 1993, 364 (6438) :616-617
[10]   WHEAT STRAW COMPOSITION AND PLACEMENT EFFECTS ON DECOMPOSITION IN DRYLAND AGRICULTURE OF THE PACIFIC NORTHWEST [J].
DOUGLAS, CL ;
ALLMARAS, RR ;
RASMUSSEN, PE ;
RAMIG, RE ;
ROAGER, NC .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1980, 44 (04) :833-837