Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons

被引:155
作者
Barashenkov, IV
Smirnov, YS
机构
[1] Department of Applied Mathematics, University of Cape Town, Western Cape
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.5707
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the externally driven damped nonlinear Schrodinger equation on an infinite line. The existence and stability chart for its soliton solution is constructed on the plane of two control parameters: the forcing amplitude h and the dissipation coefficient gamma. For generic values of h and gamma there are two coexisting solitons, one of which (psi(+)) is always unstable. The bifurcation diagram of the second soliton (psi(-)) depends on the dissipation coefficient: if gamma < gamma(cr), the psi(-) is stable for small h and loses its stability via a Hopf bifurcation as h is increased; if gamma > gamma(cr), the psi(-) is stable for all h. There are no ''stability windows'' in the unstable region. We show that the previously reported stability windows occur only when the equation is considered on a finite (and small) spatial interval.
引用
收藏
页码:5707 / 5725
页数:19
相关论文
共 33 条
[1]  
Barashenkov I. V., 1990, NONLINEAR WORLD, P3
[2]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118
[3]   COHERENCE AND CHAOS IN THE DRIVEN, DAMPED SINE-GORDON CHAIN [J].
BENNETT, D ;
BISHOP, AR ;
TRULLINGER, SE .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 47 (03) :265-277
[4]   A QUASI-PERIODIC ROUTE TO CHAOS IN A NEAR-INTEGRABLE PDE [J].
BISHOP, AR ;
FOREST, MG ;
MCLAUGHLIN, DW ;
OVERMAN, EA .
PHYSICA D, 1986, 23 (1-3) :293-328
[5]   INFLUENCE OF SOLITONS IN THE INITIAL STATE ON CHAOS IN THE DRIVEN DAMPED SINE-GORDON SYSTEM [J].
BISHOP, AR ;
FESSER, K ;
LOMDAHL, PS ;
TRULLINGER, SE .
PHYSICA D, 1983, 7 (1-3) :259-279
[6]   COHERENT SPATIAL STRUCTURE VERSUS TIME CHAOS IN A PERTURBED SINE-GORDON SYSTEM [J].
BISHOP, AR ;
FESSER, K ;
LOMDAHL, PS ;
KERR, WC ;
WILLIAMS, MB ;
TRULLINGER, SE .
PHYSICAL REVIEW LETTERS, 1983, 50 (15) :1095-1098
[7]   TOPOGRAPHY OF ATTRACTORS OF THE PARAMETRICALLY DRIVEN NONLINEAR SCHRODINGER-EQUATION [J].
BONDILA, M ;
BARASHENKOV, IV ;
BOGDAN, MM .
PHYSICA D, 1995, 87 (1-4) :314-320
[8]  
BRACCI L, 1982, PHYS REP, V86, P170
[9]   BOUND SOLITONS IN THE AC-DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
CAI, D ;
BISHOP, AR ;
GRONBECHJENSEN, N ;
MALOMED, BA .
PHYSICAL REVIEW E, 1994, 49 (02) :1677-1684
[10]   IDENTIFICATION OF MASS CAPTURING STRUCTURES IN A PERTURBED NONLINEAR SCHRODINGER-EQUATION [J].
EICKERMANN, T ;
GRAUER, R ;
SPATSCHEK, KH .
PHYSICS LETTERS A, 1995, 198 (5-6) :383-388