α-glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis

被引:141
作者
Gillmor, CS
Poindexter, P
Lorieau, J
Palcic, MM
Somerville, C
机构
[1] Carnegie Inst, Dept Plant Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
[3] Univ Alberta, Dept Chem, Edmonton, AB, Canada
关键词
cellulose; cell elongation; glycosylation; Arabidopsis; embryo;
D O I
10.1083/jcb.200111093
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Novel mutations in the RSW1 and KNOPF genes were identified in a large-scale screen for mutations that affect cell expansion in early Arabidopsis embryos. Embryos from both types of mutants were radially swollen with greatly reduced levels of crystalline cellulose, the principal structural component of the cell wall. Because RSW1 was previously shown to encode a catalytic subunit of cellulose synthase, the similar morphology of knf and rsw1-2 embryos suggests that the radially swollen phenotype of knf mutants is largely due to their cellulose deficiency. Map-based cloning of the KNF gene and enzyme assays of knf embryos demonstrated that KNF encodes alpha-glucosidase I, the enzyme that catalyzes the first step In N-linked glycan processing. The strongly reduced cellulose content of knf mutants indicates that Winked glycans are required for cellulose biosynthesis. Because cellulose synthase catalytic subunits do not appear to be N glycosylated, the N-glycan requirement apparently resides in other component(s) of the cellulose synthase machinery. Remarkably, cellular processes other than extracellular matrix biosynthesis and the formation of protein storage vacuoles appear unaffected in knf embryos. Thus in Arabidopsis cells, like yeast, N-glycan trimming is apparently required for the function of only a small subset of N-glycoproteins.
引用
收藏
页码:1003 / 1013
页数:11
相关论文
共 42 条
[1]   The role of glucosidase I (Cwh41p) in the biosynthesis of cell wall β-1,6-glucan is indirect [J].
Abeijon, C ;
Chen, LY .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (10) :2729-2738
[2]   Molecular analysis of cellulose biosynthesis in Arabidopsis [J].
Arioli, T ;
Peng, LC ;
Betzner, AS ;
Burn, J ;
Wittke, W ;
Herth, W ;
Camilleri, C ;
Höfte, H ;
Plazinski, J ;
Birch, R ;
Cork, A ;
Glover, J ;
Redmond, J ;
Williamson, RE .
SCIENCE, 1998, 279 (5351) :717-720
[3]   A large scale analysis of cDNA in Arabidopsis thaliana:: Generation of 12,028 non-redundant expressed sequence tags from normalized and size-selected cDNA libraries [J].
Asamizu, E ;
Nakamura, Y ;
Sato, S ;
Tabata, S .
DNA RESEARCH, 2000, 7 (03) :175-180
[4]  
Bloch K. D., 1995, CURRENT PROTOCOLS MO, V1
[5]   NEW METHOD FOR QUANTITATIVE-DETERMINATION OF URONIC ACIDS [J].
BLUMENKR.N ;
ASBOEHAN.G .
ANALYTICAL BIOCHEMISTRY, 1973, 54 (02) :484-489
[6]   Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development [J].
Boisson, M ;
Gomord, V ;
Audran, C ;
Berger, N ;
Dubreucq, B ;
Granier, F ;
Lerouge, P ;
Faye, L ;
Caboche, M ;
Lepiniec, L .
EMBO JOURNAL, 2001, 20 (05) :1010-1019
[7]   An aniline blue staining procedure for confocal microscopy and 3D imaging of normal and perturbed cellular phenotypes in mature Arabidopsis embryos [J].
Bougourd, S ;
Marrison, J ;
Haseloff, J .
PLANT JOURNAL, 2000, 24 (04) :543-550
[8]  
CALLIS J, 1995, GENETICS, V139, P921
[9]   In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis [J].
Campbell, P ;
Braam, J .
PLANT JOURNAL, 1999, 18 (04) :371-382
[10]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30