Abiotic methanogenesis from organosulphur compounds under ambient conditions

被引:96
作者
Althoff, Frederik [1 ,2 ]
Benzing, Kathrin
Comba, Peter
McRoberts, Colin [3 ]
Boyd, Derek R. [4 ]
Greiner, Steffen [5 ]
Keppler, Frank [1 ,2 ]
机构
[1] Heidelberg Univ, Inst Earth Sci, D-69120 Heidelberg, Germany
[2] Max Planck Inst Chem, D-55128 Mainz, Germany
[3] Agr & Food Biosci Inst, Belfast BT9 5PX, Antrim, North Ireland
[4] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT9 5AG, Antrim, North Ireland
[5] Ctr Organismal Studies, D-69120 Heidelberg, Germany
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
关键词
AEROBIC METHANE EMISSION; ULTRAVIOLET-RADIATION; TERRESTRIAL PLANTS; DIMETHYL-SULFOXIDE; ASCORBIC-ACID; OXIDATION; RADICALS; METHYL; MECHANISMS; METHIONINE;
D O I
10.1038/ncomms5205
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Methane in the environment is produced by both biotic and abiotic processes. Biomethanation involves the formation of methane by microbes that live in oxygen-free environments. Abiotic methane formation proceeds under conditions at elevated temperature and/or pressure. Here we present a chemical reaction that readily forms methane from organosulphur compounds under highly oxidative conditions at ambient atmospheric pressure and temperature. When using iron(II/III), hydrogen peroxide and ascorbic acid as reagents, S-methyl groups of organosulphur compounds are efficiently converted into methane. In a first step, methyl sulphides are oxidized to the corresponding sulphoxides. In the next step, demethylation of the sulphoxide via homolytic bond cleavage leads to methyl radical formation and finally to methane in high yields. Because sulphoxidation of methyl sulphides is ubiquitous in the environment, this novel chemical route might mimic methane formation in living aerobic organisms.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide [J].
Althoff, Frederik ;
Jugold, Alke ;
Keppler, Frank .
CHEMOSPHERE, 2010, 80 (03) :286-292
[2]   Electronic structure of bispidine Iron(IV) oxo complexes [J].
Anastasi, Anna E. ;
Comba, Peter ;
McGrady, John ;
Lienke, Achim ;
Rohwer, Heidi .
INORGANIC CHEMISTRY, 2007, 46 (16) :6420-6426
[3]   Biomimetic high-valent non-heme iron oxidants for the cis-dihydroxylation and epoxidation of olefins [J].
Bautz, Jochen ;
Comba, Peter ;
de laorden, Carlos Lopez ;
Menzel, Matthias ;
Rajaraman, Gopalan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (42) :8067-8070
[4]   Formation of an aqueous oxoiron(IV) complex at pH 2-6 from a nonheme iron(II) complex and H2O2 [J].
Bautz, Jochen ;
Bukowski, Michael R. ;
Kerscher, Marion ;
Stubna, Audria ;
Comba, Peter ;
Lienke, Achim ;
Munck, Eckard ;
Que, Lawrence, Jr. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (34) :5681-5684
[5]   Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions [J].
Brueggemann, Nicolas ;
Meier, Rudolf ;
Steigner, Dominik ;
Zimmer, Ina ;
Louis, Sandrine ;
Schnitzler, Joerg-Peter .
NEW PHYTOLOGIST, 2009, 182 (04) :912-918
[6]   Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material [J].
Bruhn, D. ;
Mikkelsen, T. N. ;
Obro, J. ;
Willats, W. G. T. ;
Ambus, P. .
PLANT BIOLOGY, 2009, 11 :43-48
[7]   Terrestrial plant methane production and emission [J].
Bruhn, Dan ;
Moller, Ian M. ;
Mikkelsen, Teis N. ;
Ambus, Per .
PHYSIOLOGIA PLANTARUM, 2012, 144 (03) :201-209
[8]   O2 evolution in the Fenton reaction [J].
Buda, F ;
Ensing, B ;
Gribnau, MCM ;
Baerends, EJ .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (14) :3436-3444
[9]  
Comba P., 2008, PROGR INORGANIC CHEM, P613
[10]   Oxidation of Cyclohexane by High-Valent Iron Bispidine Complexes: Tetradentate versus Pentadentate Ligands [J].
Comba, Peter ;
Maurer, Martin ;
Vadivelu, Prabha .
INORGANIC CHEMISTRY, 2009, 48 (21) :10389-10396