A review on biodiesel production, combustion, emissions and performance

被引:499
作者
Basha, Syed Ameer [1 ]
Gopal, K. Raja [1 ]
Jebaraj, S. [1 ]
机构
[1] Gurrala Chavidy, Chilakaluripet 522616, Andhra Pradesh, India
关键词
Biodiesel; Production; Performance; Combustion; Emissions; RAPESEED METHYL-ESTER; MADHUCA-INDICA OIL; COMPRESSION IGNITION ENGINE; WASTE COOKING OIL; CRUDE PALM OIL; DIESEL-ENGINE; EXHAUST EMISSIONS; VEGETABLE-OIL; SEED OIL; RESPONSE-SURFACE;
D O I
10.1016/j.rser.2008.09.031
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This article is a literature review on biodiesel production, combustion, performance and emissions. This study is based on the reports of about 130 scientists who published their results between 1980 and 2008. As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available sources to fulfill the energy demand of the world. More than 350 oil-bearing crops identified, among which some only considered as potential alternative fuels for diesel engines. The scientists,and researchers conducted tests by using different oils and their blends with diesel. A vast majority of the scientists reported that short-term engine tests using vegetable oils as fuels were very promising but the long-term test results showed higher carbon built up and lubricating oil contamination resulting in engine failure. They concluded that vegetable oils, either chemically altered or blended with diesel to prevent the engine failure. It was reported that the combustion characteristics of biodiesel are similar as diesel and blends were found shorter ignition delay, higher ignition temperature, higher ignition pressure and peak heat release. The engine power output was found to be equivalent to that of diesel fuel. in addition, it observed that the base catalysts are more effective than acid catalysts and enzymes. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1628 / 1634
页数:7
相关论文
共 125 条
[1]   Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine [J].
Agarwal, Deepak ;
Sinha, Shailendra ;
Agarwal, Avinash Kumar .
RENEWABLE ENERGY, 2006, 31 (14) :2356-2369
[2]   A LOW-WASTE PROCESS FOR THE PRODUCTION OF BIODIESEL [J].
AHN, E ;
KONCAR, M ;
MITTELBACH, M ;
MARR, R .
SEPARATION SCIENCE AND TECHNOLOGY, 1995, 30 (7-9) :2021-2033
[3]   Utilization of ethyl ester of waste vegetable oils as fuel in diesel engines [J].
Al-Widyan, MI ;
Tashtoush, G ;
Abu-Qudais, M .
FUEL PROCESSING TECHNOLOGY, 2002, 76 (02) :91-103
[4]   The effect of fatty acid concentration and water content on the production of biodiesel by lipase [J].
Al-Zuhair, Sulaiman ;
Jayaraman, Kishnu Vaarma ;
Krishnan, Smita ;
Chan, Wai-Hoong .
BIOCHEMICAL ENGINEERING JOURNAL, 2006, 30 (02) :212-217
[5]  
ALI Y, 971683 SAE
[6]   The potential of using vegetable oil fuels as fuel for diesel engines [J].
Altin, R ;
Çetinkaya, S ;
Yücesu, HS .
ENERGY CONVERSION AND MANAGEMENT, 2001, 42 (05) :529-538
[7]   Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends [J].
Altiparmak, Duran ;
Keskin, Ali ;
Koca, Atilla ;
Guru, Metin .
BIORESOURCE TECHNOLOGY, 2007, 98 (02) :241-246
[8]   Reduction of diesel smoke opacity from vegetable oil methyl esters during transient operation [J].
Armas, Octavio ;
Hernandez, Juan J. ;
Cardenas, Maria D. .
FUEL, 2006, 85 (17-18) :2427-2438
[9]   A numerical investigation into the anomalous slight NOx increase when burning biodiesel; A new (old) theory [J].
Ban-Weiss, George A. ;
Chen, J. Y. ;
Buchholz, Bruce A. ;
Dibble, Robert W. .
FUEL PROCESSING TECHNOLOGY, 2007, 88 (07) :659-667
[10]   Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine [J].
Bari, S ;
Lim, TH ;
Yu, CW .
RENEWABLE ENERGY, 2002, 27 (03) :339-351