CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana

被引:931
作者
Park, W [1 ]
Li, JJ [1 ]
Song, RT [1 ]
Messing, J [1 ]
Chen, XM [1 ]
机构
[1] Rutgers State Univ, Waksman Inst, Piscataway, NJ 08854 USA
关键词
D O I
10.1016/S0960-9822(02)01017-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: In metazoans, microRNAs, or miRNAs, constitute a growing family of small regulatory RNAs that are usually 19-25 nucleotides in length. They are processed from longer precursor RNAs that fold into stem-loop structures by the ribonuclease Dicer and are thought to regulate gene expression by base pairing with RNAs of protein-coding genes. In Arabidopsis thaliana, mutations in CARPEL FACTORY (CAF), a Dicer homolog, and those in a novel gene, HEN1, result in similar, multifaceted developmental defects, suggesting a similar function of the two genes, possibly in miRNA metabolism. Results: To investigate the potential functions of CAF and HEN1 in miRNA metabolism, we aimed to isolate miRNAs from Arabidopsis and examine their accumulation during plant development in wild-type plants and in hen1-1 and caf-1 mutant plants. We have isolated 11 miRNAs, some of which have potential homologs in tobacco, rice, and maize. The putative precursors of these miRNAs; have the capacity to form stable stem-loop structures. The accumulation of these miRNAs; appears to be spatially or temporally controlled in plant development, and their abundance is greatly reduced in caf-1 and hen1-1 mutants. HEN1 homologs are found in bacterial, fungal, and metazoan genomes. Conclusions: miRNAs are present in both plant and animal kingdoms. An evolutionarily conserved mechanism involving a protein, known as Dicer in animals and CAF in Arabidopsis, operates in miRNA metabolism. HEN1 is a new player in miRNA accumulation in Arabidopsis, and HEN1 homologs in metazoans may have a similar function. The developmental defects associated with caf-1 and hen1-1 mutations and the patterns of miRNA accumulation suggest that miRNAs play fundamental roles in plant development.
引用
收藏
页码:1484 / 1495
页数:12
相关论文
共 49 条
  • [1] ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
  • [2] RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants
    Baulcombe, DC
    [J]. PLANT MOLECULAR BIOLOGY, 1996, 32 (1-2) : 79 - 88
  • [3] Role for a bidentate ribonuclease in the initiation step of RNA interference
    Bernstein, E
    Caudy, AA
    Hammond, SM
    Hannon, GJ
    [J]. NATURE, 2001, 409 (6818) : 363 - 366
  • [4] AGO1 defines a novel locus of Arabidopsis controlling leaf development
    Bohmert, K
    Camus, I
    Bellini, C
    Bouchez, D
    Caboche, M
    Benning, C
    [J]. EMBO JOURNAL, 1998, 17 (01) : 170 - 180
  • [5] BOWMAN JL, 1991, DEVELOPMENT, V112, P1
  • [6] Transcription - Gene silencing in worms and fungi
    Catalanotto, C
    Azzalin, G
    Macino, G
    Cogoni, C
    [J]. NATURE, 2000, 404 (6775) : 245 - 245
  • [7] Chen XM, 2002, DEVELOPMENT, V129, P1085
  • [8] HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway
    Chen, XM
    Meyerowitz, EM
    [J]. MOLECULAR CELL, 1999, 3 (03) : 349 - 360
  • [9] An RNA-Dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus
    Dalmay, T
    Hamilton, A
    Rudd, S
    Angell, S
    Baulcombe, DC
    [J]. CELL, 2000, 101 (05) : 543 - 553
  • [10] RNA interference is mediated by 21-and 22-nucleotide RNAs
    Elbashir, SM
    Lendeckel, W
    Tuschl, T
    [J]. GENES & DEVELOPMENT, 2001, 15 (02) : 188 - 200