Shifts and widths of collective excitations in trapped Bose gases determined by the dielectric formalism -: art. no. 043606

被引:53
作者
Reidl, J [1 ]
Csordás, A
Graham, R
Szépfalusy, P
机构
[1] Univ Essen Gesamthsch, Fachbereich Phys, D-45117 Essen, Germany
[2] Hungarian Acad Sci, Res Grp Stat Phys, H-1117 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Phys Complex Syst, H-1117 Budapest, Hungary
[4] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
关键词
D O I
10.1103/PhysRevA.61.043606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present predictions for temperature-dependent shifts and damping rates. They are obtained by applying the dielectric formalism to set up a self-consistent model of a trapped Bose gas which can be shown to satisfy generalized Ward identities. Within the framework of the model we use lowest-order perturbation theory to determine the first-order correction to the results of Hartree-Fock-Bogoliubov-Popov theory fur the complex collective excitation frequencies, and present numerical results for the temperature dependence of the damping rates and the frequency shifts. Good agreement with the experimental values measured by Jin et al. [Phys. Rev. Lett. 77, 420 (1996)] are found for the m=2 mode, while we find disagreements in the shifts for m=0. The latter point to the necessity of a nonperturbative treatment for an explanation of the temperature dependence of the m=0 shifts.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Propagation of sound in a Bose-Einstein condensate [J].
Andrews, MR ;
Kurn, DM ;
Miesner, HJ ;
Durfee, DS ;
Townsend, CG ;
Inouye, S ;
Ketterle, W .
PHYSICAL REVIEW LETTERS, 1997, 79 (04) :553-556
[2]   Dielectric formalism and damping of collective modes in trapped Bose-Einstein condensed gases [J].
Bene, G ;
Szepfalusy, P .
PHYSICAL REVIEW A, 1998, 58 (05) :R3391-R3394
[3]  
BIJLSMA MJ, CONDMAT9902065
[4]  
CORNELL EA, CONDMAT9903109
[5]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[6]   Finite-temperature perturbation theory for a spatially inhomogeneous Bose-condensed gas [J].
Fedichev, PO ;
Shlyapnikov, GV .
PHYSICAL REVIEW A, 1998, 58 (04) :3146-3158
[7]   Damping of low-energy excitations of a trapped Bose-Einstein condensate at finite temperatures [J].
Fedichev, PO ;
Shlyapnikov, GV ;
Walraven, JTM .
PHYSICAL REVIEW LETTERS, 1998, 80 (11) :2269-2272
[8]  
FLIESSER M, UNPUB
[9]  
FLIESSER M, COMMUNICATION
[10]  
Griffin A., 1993, EXCITATIONS BOSE CON