Calculation of Neel temperature for S=1/2 Heisenberg quasi-one-dimensional antiferromagnets

被引:52
作者
Irkhin, VY [1 ]
Katanin, AA [1 ]
机构
[1] Russian Acad Sci, Inst Met Phys, Ekaterinburg 620219, Russia
关键词
D O I
10.1103/PhysRevB.61.6757
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Isotropic S=1/2 quasi-one-dimensional antiferromagnets are considered within the bosonization method. The 1/z(perpendicular to) corrections to the interchain mean-field theory (where z(perpendicular to) is the number of nearest neighbors in transverse to chain directions) are obtained for the ground-state sublattice magnetization (S) over bar(0) and Neel temperature T-N. The corrections to T-N make up about 25% of mean-field value, while those to (S) over bar(0) are small enough (especially in the three-dimensional case). The fluctuation corrections obtained improve considerably the agreement with the experimental data for magnetic-chain compounds KCuF3, Sr2CuO3, and Ca2CuO3.
引用
收藏
页码:6757 / 6764
页数:8
相关论文
共 28 条
[1]   QUANTUM SPIN CHAINS AND THE HALDANE GAP [J].
AFFLECK, I .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (19) :3047-3072
[2]   CRITICAL-BEHAVIOR OF SPIN-S HEISENBERG ANTIFERROMAGNETIC CHAINS - ANALYTIC AND NUMERICAL RESULTS [J].
AFFLECK, I ;
GEPNER, D ;
SCHULZ, HJ ;
ZIMAN, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :511-529
[3]   On a renormalization group approach to dimensional crossover [J].
Affleck, I ;
Halperin, BI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11) :2627-2631
[4]   A PLANE OF WEAKLY COUPLED HEISENBERG-CHAINS - THEORETICAL ARGUMENTS AND NUMERICAL-CALCULATIONS [J].
AFFLECK, I ;
GELFAND, MP ;
SINGH, RRP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (22) :7313-7325
[5]   MAGNETIC-SUSCEPTIBILITY AND LOW-TEMPERATURE STRUCTURE OF THE LINEAR-CHAIN CUPRATE SR2CUO3 [J].
AMI, T ;
CRAWFORD, MK ;
HARLOW, RL ;
WANG, ZR ;
JOHNSTON, DC ;
HUANG, Q ;
ERWIN, RW .
PHYSICAL REVIEW B, 1995, 51 (09) :5994-6001
[6]   Finite-size scaling for the spin-1/2 Heisenberg antiferromagnetic chain [J].
Barzykin, V ;
Affleck, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (06) :867-874
[7]  
BARZYKIN V, CONDMAT9904250
[8]   THERMODYNAMICS OF THE MASSIVE THIRRING SINE-GORDON MODEL - THE BETHE ANSATZ VARIATIONAL METHOD [J].
CHUNG, SG ;
CHANG, YC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (10) :2875-2894
[9]   Quasi-one-dimensional spin-1/2 Heisenberg magnets in their ordered phase: Correlation functions [J].
Essler, FHL ;
Tsvelik, AM ;
Delfino, G .
PHYSICAL REVIEW B, 1997, 56 (17) :11001-11013