Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods

被引:56
作者
Ben Belgacem, F [1 ]
机构
[1] Univ Toulouse 3, INSAT,UT1, CNRS, UMR 5640, F-31062 Toulouse 04, France
关键词
unilateral contact problem; finite elements;
D O I
10.1137/S0036142998347966
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This contribution deals with the finite element approximation of the variational inequalities coming from the Signorini problem and the unilateral contact between two elastic bodies. The numerical analysis we carry out improves former results and states optimal convergence rates, under reasonable regularity hypotheses, for both conforming and nonconforming methods.
引用
收藏
页码:1198 / 1216
页数:19
相关论文
共 31 条
  • [1] Adams A, 2003, SOBOLEV SPACES
  • [2] About the mortar finite element method for non-local Coulomb law in contact problems
    Bayada, G
    Chambat, M
    Lhalouani, K
    Sassi, T
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1323 - 1328
  • [3] Extension of the mortar finite element method to a variational inequality modeling unilateral contact
    Ben Belgacem, F
    Hild, P
    Laborde, P
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) : 287 - 303
  • [4] Approximation of the unilateral contact problem by the mortar finite element method
    BenBelgacem, F
    Hild, P
    Laborde, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (01): : 123 - 127
  • [5] BENBELGACEM F, 1993, THESIS U P M CURIE
  • [6] BERNARDI C, 1990, MATH COMPUT, V54, P21, DOI 10.1090/S0025-5718-1990-0995205-7
  • [7] BERNARDI C, 1990, COLL FRANC SEM, P13
  • [8] BREZZI F, 1977, NUMER MATH, V28, P431, DOI 10.1007/BF01404345
  • [9] Brezzi F., 1991, SPRINGER SER COMPUT, V15
  • [10] CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems