Dielectric and conductivity spectroscopy of Li1-xNi1+xO2 in the range of 10-1010 Hz:: polaron hopping

被引:27
作者
Badot, JC
Bianchi, V
Baffier, N
Belhadj-Tahar, N
机构
[1] ENSCP, Lab Chim Appl Etat Solide, CNRS, UMR 7574, F-75231 Paris 05, France
[2] Univ Paris 06, Superlec, CNRS, Lab Genie Elect Paris, F-91192 Gif Sur Yvette, France
[3] Univ Paris 11, Superlec, CNRS, Lab Genie Elect Paris, F-91192 Gif Sur Yvette, France
关键词
D O I
10.1088/0953-8984/14/28/303
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Dielectric and conductivity spectra of the compound Li1-xNi1+xO2 (x = 0.03) are reported and analysed. The spectra were recorded for compacted powders within the broad frequency range 10-10(10) Hz at temperatures varying between 210 and 300 K. The evolution of the spectra of the sample with respect to the damage under air allows us to define two regimes: the first one is an interfacial regime and the second a bulk regime. The frequency of crossover (nu(co)) between the two regimes lies in the interval 1 x 10(9) and 2 x 10(9) Hz at room temperature. At frequencies below nu(co), the spectral analysis shows dielectric relaxations due to interfacial polarization phenomena in the sample. The complex resistivity plots (for nu < nu(co)) allowed the determination of the dc conductivity of Li1-xNi1+xO2 versus temperature. At frequencies greater than nu(co), one dielectric relaxation corresponding to small-polaron hopping has been observed. The corresponding relaxation frequency is thermally activated with an activation energy of 0.15-0.16 eV and a pre-exponential factor nu(0) approximate to 3 x 10(12)-4 x 10(12) Hz, which is of the order of the longitudinal-optical-phonon frequency nu(LO). The conduction behaviour is interpreted in terms of hopping of small polarons (holes) on an oxygen network.
引用
收藏
页码:6917 / 6930
页数:14
相关论文
共 51 条
[1]  
ALEXANDROV AS, 1998, POLARONS BIPOLARONS
[2]   Cationic and magnetic order in LiNiO2- and NiO-type Li-Ni mixed oxides [J].
Azzoni, CB ;
Paleari, A ;
Massarotti, V ;
Bini, M ;
Capsoni, D .
PHYSICAL REVIEW B, 1996, 53 (02) :703-709
[3]   DIELECTRIC STUDY OF V2O5-1.6 H2O XEROGEL IN THE BROAD FREQUENCY-RANGE (105-1010 HZ) [J].
BADOT, JC ;
FOURRIERLAMER, A ;
BAFFIER, N .
JOURNAL DE PHYSIQUE, 1985, 46 (12) :2107-2115
[4]  
Barra AL, 1999, EUR PHYS J B, V7, P551, DOI 10.1007/s100510050648
[5]   BROAD-BAND SIMULTANEOUS MEASUREMENT OF COMPLEX PERMITTIVITY AND PERMEABILITY USING A COAXIAL DISCONTINUITY [J].
BELHADJTAHAR, NE ;
FOURRIERLAMER, A ;
DECHANTERAC, H .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1990, 38 (01) :1-7
[6]   Synthesis, structural characterization and magnetic properties of quasistoichiometric LiNiO2 [J].
Bianchi, V ;
Caurant, D ;
Baffier, N ;
Belhomme, C ;
Chappel, E ;
Chouteau, G ;
Bach, S ;
Pereira-Ramos, JP ;
Sulpice, A ;
Wilmann, P .
SOLID STATE IONICS, 2001, 140 (1-2) :1-17
[7]   A NOTE ON THE DIELECTRIC DISPERSION IN POLYCRYSTALLINE MATERIALS [J].
BILLIG, E ;
PLESSNER, KW .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1951, 64 (376) :361-363
[8]   SMALL-POLARON VERSUS BAND CONDUCTION IN SOME TRANSITION-METAL OXIDES [J].
BOSMAN, AJ ;
VANDAAL, HJ .
ADVANCES IN PHYSICS, 1970, 19 (77) :1-&
[9]   LIXNIO2, A PROMISING CATHODE FOR RECHARGEABLE LITHIUM BATTERIES [J].
BROUSSELY, M ;
PERTON, F ;
BIENSAN, P ;
BODET, JM ;
LABAT, J ;
LECERF, A ;
DELMAS, C ;
ROUGIER, A ;
PERES, JP .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :109-114
[10]   High dielectric permittivity and hole-doping effect in La1-xSrxFeO3 [J].
Chern, G ;
Hsieh, WK ;
Tai, MF ;
Hsung, KS .
PHYSICAL REVIEW B, 1998, 58 (03) :1252-1260