Halo-coronal mass ejections near the 23rd solar minimum: lift-off, inner heliosphere, and in situ (1 AU) signatures

被引:39
作者
Berdichevsky, DB [1 ]
Farrugia, CJ
Thompson, BJ
Lepping, RP
Reames, DV
Kaiser, ML
Steinberg, JT
Plunkett, SP
Michels, DJ
机构
[1] Emergent Informat Technol E, Largo, MD 20774 USA
[2] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] MIT, Ctr Space Res, Cambridge, MA 02139 USA
[5] USN, Res Lab, USRA, Washington, DC USA
[6] USN, Res Lab, Washington, DC 20375 USA
关键词
radio science; remote sensing; solar physics; astrophysics and astronomy; flares and mass ejections; space plasma physics; nonlinear phenomena;
D O I
10.5194/angeo-20-891-2002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The extreme ultraviolet (EUV) signatures of a solar lift-off, decametric and kilometric radio burst emissions and energetic particle (EP) inner heliospheric signatures of an interplanetary shock, and in situ identification of its driver through solar wind observations are discussed for 12 isolated halo coronal mass ejections (H-CMEs) occurring between December 1996 and 1997. For the aforementioned twelve and the one event added in the discussion, it is found that ten passed several necessary conditions for being a "Sun-Earth connection". It is found that low corona EUV and Halpha chromospheric signatures indicate filament eruption as the cause of H-CME. These signatures indicate that the 12 events can be divided into two major subsets, 7 related to active regions (ARs) and 5 unrelated or related to decayed AR. In the case of events related to AR, there is indication of a faster liftoff, while a more gradual lift-off appears to characterize the second set. Inner heliospheric signatures - the presence of long lasting enhanced energetic particle flux and/or kilometric type II radio bursts - of a driven shock were identified in half of the 12 events. The in situ (1 AU) analyses using five different solar wind ejecta. signatures and comparisons with the bidirectional flow of suprathermal particles and For-bush decreases result in indications of a strong solar wind ejecta signatures for 11 out of 12 cases. From the discussion of these results, combined with work by other authors for overlapping events, we conclude that good Sun-Earth connection candidates originate most likely from solar filament eruptions with at least one of its extremities located closer to the central meridian than similar to30degreesE or similar to35degreesW with a larger extension in latitudinal location possible. In seven of the twelve cases it appears that the encountered ejecta was driving a shock at 1 AU. Support for this interpretation is found on the approximately equal velocity of the shock and the ejecta leading-edge. These shocks were weak to moderate in strength, and a comparison of their transit time with their local speed indicated a deceleration. In contradistinction with this result on shocks, the transit time versus the local speed of the ejecta appeared either to indicate that the ejecta as a whole traveled at constant speed or underwent a small amount of acceleration. This is a result that stands for cases with and without fast stream observations at their rear end. Seven out of twelve ejecta candidate intervals were themselves interplanetary magnetic cloud (IMC) or contained a previously identified IMC. As a by-product of this study, we noticed two good ejecta candidates at 1 AU for which observation of a H-CME or CME appears to be missing.
引用
收藏
页码:891 / 916
页数:26
相关论文
共 89 条
[1]   THE GLOBAL GEOSPACE SCIENCE PROGRAM AND ITS INVESTIGATIONS [J].
ACUNA, MH ;
OGILVIE, KW ;
BAKER, DN ;
CURTIS, SA ;
FAIRFIELD, DH ;
MISH, WH .
SPACE SCIENCE REVIEWS, 1995, 71 (1-4) :5-21
[2]  
[Anonymous], 1995, INTERPLANETARY MAGNE
[3]   Evidence for multiple ejecta: April 7-11, 1997, ISTP Sun-Earth connection event [J].
Berdichevsky, D ;
Bougeret, JL ;
Delaboudiniere, JP ;
Fox, N ;
Kaiser, M ;
Lepping, R ;
Michels, D ;
Plunkett, S ;
Reames, D ;
Reiner, M ;
Richardson, I ;
Rostoker, G ;
Steinberg, J ;
Thompson, B ;
von Rosenvinge, T .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (14) :2473-2476
[4]   Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by Wind over its first 2.5 years [J].
Berdichevsky, DB ;
Szabo, A ;
Lepping, RP ;
Viñas, AF ;
Mariani, F .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A12) :27289-27314
[5]   CME geometry in relation to cosmic ray anisotropy [J].
Bieber, JW ;
Evenson, P .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (15) :2955-2958
[6]   WAVES - THE RADIO AND PLASMA-WAVE INVESTIGATION ON THE WIND SPACECRAFT [J].
BOUGERET, JL ;
KAISER, ML ;
KELLOGG, PJ ;
MANNING, R ;
GOETZ, K ;
MONSON, SJ ;
MONGE, N ;
FRIEL, L ;
MEETRE, CA ;
PERCHE, C ;
SITRUK, L ;
HOANG, S .
SPACE SCIENCE REVIEWS, 1995, 71 (1-4) :231-263
[7]  
Bougeret JL, 1998, GEOPHYS RES LETT, V25, P1403
[8]   Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997 [J].
Brueckner, GE ;
Delaboudiniere, JP ;
Howard, RA ;
Paswaters, SE ;
St Cyr, OC ;
Schwenn, R ;
Lamy, P ;
Simnett, GM ;
Thompson, B ;
Wang, D .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (15) :3019-3022
[9]   The large angle spectroscopic coronagraph (LASCO) [J].
Brueckner, GE ;
Howard, RA ;
Koomen, MJ ;
Korendyke, CM ;
Michels, DJ ;
Moses, JD ;
Socker, DG ;
Dere, KP ;
Lamy, PL ;
Llebaria, A ;
Bout, MV ;
Schwenn, R ;
Simnett, GM ;
Bedford, DK ;
Eyles, CJ .
SOLAR PHYSICS, 1995, 162 (1-2) :357-402
[10]   A magnetic cloud containing prominence material: January 1997 [J].
Burlaga, L ;
Fitzenreiter, R ;
Lepping, R ;
Ogilvie, K ;
Szabo, A ;
Lazarus, A ;
Steinberg, J ;
Gloeckler, G ;
Howard, R ;
Michels, D ;
Farrugia, C ;
Lin, RP ;
Larson, DE .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A1) :277-285