Only one protomer is active in the dimer of SARS 3C-like proteinase

被引:101
作者
Chen, Hao
Wei, Ping
Huang, Changkang
Tan, Lei
Liu, Ying
Lai, Luhua
机构
[1] Peking Univ, Coll Chem, State Key Lab Struct Chem Unstable & Stable Speci, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Theoret Biol, Beijing 100871, Peoples R China
关键词
D O I
10.1074/jbc.M510745200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The severe acute respiratory syndrome coronavirus 3C-like protease has been proposed to be a key target for structurally based drug design against SARS. The enzyme exists as a mixture of dimer and monomer, and only the dimer was considered to be active. In this report, we have investigated, using molecular dynamics simulation and mutational studies, the problems as to why only the dimer is active and whether both of the two protomers in the dimer are active. The molecular dynamics simulations show that the monomers are always inactive, that the two protomers in the dimer are asymmetric, and that only one protomer is active at a time. The enzyme activity of the hybrid severe acute respiratory syndrome coronavirus 3C-like protease of the wild-type protein and the inactive mutant proves that the dimerization is important for enzyme activity and only one active protomer in the dimer is enough for the catalysis. Our simulations also show that the right conformation for catalysis in one protomer can be induced upon dimer formation. These results suggest that the enzyme may follow the association, activation, catalysis, and dissociation mechanism for activity control.
引用
收藏
页码:13894 / 13898
页数:5
相关论文
共 31 条
[1]   Coronavirus main proteinase (3CLpro) structure:: Basis for design of anti-SARS drugs [J].
Anand, K ;
Ziebuhr, J ;
Wadhwani, P ;
Mesters, JR ;
Hilgenfeld, R .
SCIENCE, 2003, 300 (5626) :1763-1767
[2]   Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain [J].
Anand, K ;
Palm, GJ ;
Mesters, JR ;
Siddell, SG ;
Ziebuhr, J ;
Hilgenfeld, R .
EMBO JOURNAL, 2002, 21 (13) :3213-3224
[3]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[4]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[5]   Severe acute respiratory syndrome coronavirus 3C-like proteinase n terminus is indispensable for proteolytic activity but not for enzyme dimerization - Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations [J].
Chen, S ;
Chen, LL ;
Tan, JZ ;
Chen, J ;
Du, L ;
Sun, T ;
Shen, JH ;
Chen, KX ;
Jiang, HL ;
Shen, X .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (01) :164-173
[6]   Quaternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease [J].
Chou, CY ;
Chang, HC ;
Hsu, WC ;
Lin, TZ ;
Lin, CH ;
Chang, GG .
BIOCHEMISTRY, 2004, 43 (47) :14958-14970
[7]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[8]   Identification of a novel coronavirus in patients with severe acute respiratory syndrome [J].
Drosten, C ;
Günther, S ;
Preiser, W ;
van der Werf, S ;
Brodt, HR ;
Becker, S ;
Rabenau, H ;
Panning, M ;
Kolesnikova, L ;
Fouchier, RAM ;
Berger, A ;
Burguière, AM ;
Cinatl, J ;
Eickmann, M ;
Escriou, N ;
Grywna, K ;
Kramme, S ;
Manuguerra, JC ;
Müller, S ;
Rickerts, V ;
Stürmer, M ;
Vieth, S ;
Klenk, HD ;
Osterhaus, ADME ;
Schmitz, H ;
Doerr, HW .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (20) :1967-1976
[9]   Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase [J].
Fan, KQ ;
Wei, P ;
Feng, Q ;
Chen, SD ;
Huang, CK ;
Ma, L ;
Lai, B ;
Pei, JF ;
Liu, Y ;
Chen, JG ;
Lai, LH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (03) :1637-1642
[10]  
Hess B, 1997, J COMPUT CHEM, V18, P1463, DOI 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO