Biology of cardiac arrhythmias - Ion channel protein trafficking

被引:174
作者
Delisle, BP
Anson, BD
Rajamani, S
January, CT
机构
[1] Univ Wisconsin, Dept Med, CSC, Sect Cardiovasc Med, Madison, WI 53792 USA
[2] Univ Wisconsin, Dept Physiol, Sect Cardiovasc Med, Madison, WI 53792 USA
关键词
arrhythmia; ion channels; protein trafficking; cell biology;
D O I
10.1161/01.RES.0000128561.28701.ea
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The mechanisms underlying normal and abnormal cardiac rhythms are complex and incompletely understood. Through the study of uncommon inheritable arrhythmia syndromes, including the long QT and Brugada syndromes, new insights are emerging. At the cellular and tissue levels, we now recognize that ion channel current is the sum of biophysical (gating, permeation), biochemical (phosphorylation, etc), and biogenic ( biosynthesis, processing, trafficking, and degradation) properties. This review focuses on how heart cells process ion channel proteins and how this protein trafficking may be altered in some cardiac arrhythmia diseases. In this review, we honor Dr Harry A. Fozzard, a modern pioneer in cardiac arrhythmias, cell biology, and molecular electrophysiology. As a scientist and physician, his writings and mentorship have served to foster a generation of investigators who continue to bring this complex field toward greater scientific understanding and impact on humankind.
引用
收藏
页码:1418 / 1428
页数:11
相关论文
共 123 条
[1]   MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia [J].
Abbott, GW ;
Sesti, F ;
Splawski, I ;
Buck, ME ;
Lehmann, WH ;
Timothy, KW ;
Keating, MT ;
Goldstein, SAN .
CELL, 1999, 97 (02) :175-187
[2]   Mutations in connexin 32: the molecular and biophysical bases for the X-linked form of Charcot-Marie-Tooth disease [J].
Abrams, CK ;
Oh, S ;
Ri, Y ;
Bargiello, TA .
BRAIN RESEARCH REVIEWS, 2000, 32 (01) :203-214
[3]   Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome [J].
Ackerman, MJ ;
Siu, BL ;
Sturner, WQ ;
Tester, DJ ;
Valdivia, CR ;
Makielski, JC ;
Towbin, JA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2001, 286 (18) :2264-2269
[4]   A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome [J].
Akai, J ;
Makita, N ;
Sakurada, H ;
Shirai, N ;
Ueda, K ;
Kitabatake, A ;
Nakazawa, K ;
Kimura, A ;
Hiraoka, M .
FEBS LETTERS, 2000, 479 (1-2) :29-34
[5]   Identification of a COOH-terminal segment involved in maturation and stability of human ether-a-go-go-related gene potassium channels [J].
Akhavan, A ;
Atanasiu, R ;
Shrier, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (41) :40105-40112
[6]   KINETICS OF FORMATION OF NATIVE RIBONUCLEASE DURING OXIDATION OF REDUCED POLYPEPTIDE CHAIN [J].
ANFINSEN, CB ;
HABER, E ;
SELA, M ;
WHITE, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1961, 47 (09) :1309-+
[7]   Traffic jams II: An update of diseases of intracellular transport [J].
Aridor, M ;
Hannan, LA .
TRAFFIC, 2002, 3 (11) :781-790
[8]   Traffic jam: A compendium of human diseases that affect intracellular transport processes [J].
Aridor, M ;
Hannan, LA .
TRAFFIC, 2000, 1 (11) :836-851
[9]   Expression and intracellular localization of an SCN5A double mutant R1232W/T1620M implicated in Brugada syndrome [J].
Baroudi, G ;
Acharfi, S ;
Larouche, C ;
Chahine, M .
CIRCULATION RESEARCH, 2002, 90 (01) :E11-E16
[10]   Novel mechanism forBrugada syndrome -: Defective surface localization of an SCN5A mutant (R1432G) [J].
Baroudi, G ;
Pouliot, V ;
Denjoy, I ;
Guicheney, P ;
Shrier, A ;
Chahine, M .
CIRCULATION RESEARCH, 2001, 88 (12) :E78-E83