Fractal noise in quantum ballistic and diffusive lattice systems

被引:8
作者
Amanatidis, EJ [1 ]
Katsanos, DE [1 ]
Evangelou, SN [1 ]
机构
[1] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece
关键词
D O I
10.1103/PhysRevB.69.195107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate fractal noise in the quantum evolution of wave packets moving either ballistically or diffusively in periodic and quasiperiodic tight-binding lattices, respectively. For the ballistic case with various initial superpositions we obtain a space-time self-affine fractal Psi(x,t) which verifies the predictions by Berry for "a particle in a box," in addition to quantum revivals. For the diffusive case self-similar fractal evolution is also obtained. These universal fractal features of quantum theory might be useful in the field of quantum information, for creating efficient quantum algorithms, and can possibly be detectable in scattering from nanostructures.
引用
收藏
页码:195107 / 1
页数:8
相关论文
共 21 条
[1]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[2]  
[Anonymous], 1998, FRACTALS
[3]   Fractional wave-function revivals in the infinite square well [J].
Aronstein, DL ;
Stroud, CR .
PHYSICAL REVIEW A, 1997, 55 (06) :4526-4537
[4]  
Berry M, 2001, PHYS WORLD, V14, P39
[5]   Quantum fractals in boxes [J].
Berry, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (20) :6617-6629
[6]   Shot noise in mesoscopic conductors [J].
Blanter, YM ;
Büttiker, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 336 (1-2) :1-166
[7]   Factoring integers with Young's N-slit interferometer [J].
Clauser, JF ;
Dowling, JP .
PHYSICAL REVIEW A, 1996, 53 (06) :4587-4590
[8]   MULTIFRACTAL QUANTUM EVOLUTION AT A MOBILITY EDGE [J].
EVANGELOU, SN ;
KATSANOS, DE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23) :L1243-L1250
[9]   Quantum-fractal revival structure in CN quadratic spectra:: Base-N quantum computer registers -: art. no. 012312 [J].
Harter, WG .
PHYSICAL REVIEW A, 2001, 64 (01) :17
[10]   Quantum random walks: an introductory overview [J].
Kempe, J .
CONTEMPORARY PHYSICS, 2003, 44 (04) :307-327