A Survey on Concept Drift Adaptation

被引:2011
作者
Gama, Joao [1 ,2 ]
Zliobaite, Indre [3 ,4 ]
Bifet, Albert [5 ]
Pechenizkiy, Mykola [6 ]
Bouchachia, Abdelhamid [7 ]
机构
[1] Univ Porto, Lab Artificial Intelligence & Decis Support LIA I, P-4100 Oporto, Portugal
[2] Univ Porto, FEP, P-4100 Oporto, Portugal
[3] Aalto Univ, Dept Informat & Comp Sci, FI-00076 Aalto, Finland
[4] Aalto Univ, Espoo, Finland
[5] Yahoo Res Barcelona, Barcelona, Spain
[6] Eindhoven Univ Technol, Dept Comp Sci, NL-5600 MB Eindhoven, Netherlands
[7] Bournemouth Univ, Fac Sci & Technol, Dept Comp, Poole BH12 5BB, Dorset, England
基金
芬兰科学院;
关键词
Design; Algorithms; Performance; Concept drift; change detection; adaptive learning; data streams; WEIGHTED-MAJORITY; RECOMMENDER SYSTEMS; DATA STREAMS; PREDICTION; TRACKING; CLASSIFICATION; CLASSIFIERS; WINDOW; ERROR; SHIFT;
D O I
10.1145/2523813
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this article, we characterize adaptive learning processes; categorize existing strategies for handling concept drift; overview the most representative, distinct, and popular techniques and algorithms; discuss evaluation methodology of adaptive algorithms; and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state of the art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts, and practitioners.
引用
收藏
页数:37
相关论文
共 161 条
[1]   EVE: a framework for event detection [J].
Adae, Iris ;
Berthold, Michael R. .
EVOLVING SYSTEMS, 2013, 4 (01) :61-70
[2]   Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [J].
Adomavicius, G ;
Tuzhilin, A .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (06) :734-749
[3]  
Aggarwal C.C., 2006, P 32 INT C VER LARG, P607
[4]   On change diagnosis in evolving data streams [J].
Aggarwal, CC .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (05) :587-600
[5]  
AGRAWAL R, 1992, PROC INT CONF VERY L, P560
[6]   DATABASE MINING - A PERFORMANCE PERSPECTIVE [J].
AGRAWAL, R ;
IMIELINSKI, T ;
SWAMI, A .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1993, 5 (06) :914-925
[7]  
Al-Kateb Mohammed, 2007, 2007 International Conference on Scientific and Statistical Database Management, DOI 10.1109/SSDBM.2007.29
[8]   Knowledge discovery in data streams with regression tree methods [J].
Alberg, Dima ;
Last, Mark ;
Kandel, Abraham .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 2 (01) :69-78
[9]   Predictive Handling of Asynchronous Concept Drifts in Distributed Environments [J].
Ang, Hock Hee ;
Gopalkrishnan, Vivekanand ;
Zliobaite, Indre ;
Pechenizkiy, Mykola ;
Hoi, Steven C. H. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (10) :2343-2355
[10]  
[Anonymous], 2000, ICML, DOI DOI 10.1007/978-3-540-44871-6_130