Exact two-dimensional formulation of the 3D Kirchhoff-Love shell model

被引:12
作者
Anicic, S
Léger, A
机构
[1] EDF DER, Postes & Lignes, F-92141 Clamart, France
[2] EDF DER, Mecan & Modeles Numer, F-92141 Clamart, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 08期
关键词
D O I
10.1016/S0764-4442(00)88228-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exact two-dimensional formulation of the 3D Kirchhoff-Love shell model is given by an integration over the thickness, without making the thickness assumption h << R of the Koiter's model. Based on h/2 less than or equal to inf (\R-1(x)\, \R-2(x)\, x is an element of <(omega)over bar>) - delta, delta > 0 assumption, the proposed two-dimensional shell model permits to consider small radii of curvature of the middle surface of the shell, of h order. This model exhibits a coupling between menbrane and bending effects and displays the same asymptotic behavior as the Koiter shell model when the thickness h tends to 0. An existence and uniqueness result is given. (C) 1999 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:741 / 746
页数:6
相关论文
共 6 条
[1]  
ANICIC S, THESIS U GRENOBLE
[2]  
BLOUZA A, 1994, CR ACAD SCI I-MATH, V319, P1015
[3]  
BLOUZA A, 1994, CR ACAD SCI I-MATH, V319, P1127
[4]  
KOITER WT, 1970, PROC K NED AKAD B-PH, V73, P169
[5]  
SANCHEZPALENCIA E, 1989, CR ACAD SCI I-MATH, V309, P531
[6]  
SANCHEZPALENCIA E, 1989, CR ACAD SCI I-MATH, V309, P411