A new kind of periodic stationary solution of the cubic Ginzburg-Landau equation

被引:3
作者
Afanasjev, VV
Akhmediev, N
机构
[1] Optical Sciences Centre, Australian National University, Canberra
关键词
D O I
10.1016/S0378-4371(96)00204-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the long-scale dynamics of the modulationally unstable plane wave in the cubic complex Ginzburg-Landau equation without a diffusion term. Our numerical studies reveal that when the dissipative effects dominate over the conservative effects a new kind of temporally stationary but spatially periodic solution can be found.
引用
收藏
页码:801 / 808
页数:8
相关论文
共 10 条
[1]  
AFANASJEV VV, UNPUB PHYS REV E
[2]  
Akhmediev N., 1986, TEOR MAT FIZ, V69, P189
[3]  
AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
[4]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[5]  
AKHMEDIEV NN, 1990, PLASMA THEORY NONLIN, V2, P788
[6]   THE ECKHAUS INSTABILITY FOR TRAVELING WAVES [J].
JANIAUD, B ;
PUMIR, A ;
BENSIMON, D ;
CROQUETTE, V ;
RICHTER, H ;
KRAMER, L .
PHYSICA D, 1992, 55 (3-4) :269-286
[7]  
KATOU K, 1986, J PHYS A-MATH GEN, V19, P1063
[8]   PATTERN COMPETITION AND THE DECAY OF UNSTABLE PATTERNS IN QUASI-ONE-DIMENSIONAL SYSTEMS [J].
KRAMER, L ;
SCHOBER, HR ;
ZIMMERMANN, W .
PHYSICA D-NONLINEAR PHENOMENA, 1988, 31 (02) :212-226
[9]   SMALL-AMPLITUDE PERIODIC AND CHAOTIC SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION FOR A SUBCRITICAL BIFURCATION [J].
SCHOPF, W ;
KRAMER, L .
PHYSICAL REVIEW LETTERS, 1991, 66 (18) :2316-2319
[10]   ECKHAUS AND BENJAMIN-FEIR RESONANCE MECHANISMS [J].
STUART, JT ;
DIPRIMA, RC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1708) :27-41