Oxidative Stress Is Linked to ERK1/2-p16 Signaling-mediated Growth Defect in ATM-deficient Astrocytes

被引:65
作者
Kim, Jeesun [1 ]
Wong, Paul K. Y. [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Sci Pk Res Div, Dept Carcinogenesis, Smithville, TX 78957 USA
关键词
CELL SELF-RENEWAL; ATAXIA-TELANGIECTASIA; CYCLE CONTROL; INK4A LOCUS; CANCER; MUTANT; GENE; NEURODEGENERATION; APOPTOSIS; NEURONS;
D O I
10.1074/jbc.M808116200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The gene that encodes the ATM protein kinase is mutated in ataxia-telangiectasia (A-T). One of the prominent features of A-T is progressive neurodegeneration. We have previously reported that primary astrocytes isolated from Atm(-/-) mice grow slowly and die earlier than control cells in culture. However, the mechanisms for this remain unclear. We show here that intrinsic elevated intracellular levels of reactive oxygen species (ROS) are associated with the senescence-like growth defect of Atm(-/-) astrocytes. This condition is accompanied by constitutively higher levels of ERK1/2 phosphorylation and p16(Ink4a) in Atm(-/-) astrocytes. We also observe that ROS-induced up-regulation of p16(Ink4a) occurs correlatively with ERK1/2-dependent down-regulation and subsequent dissociation from chromatin of Bmi-1. Furthermore, both mitogen-activated protein kinase (MAPK)/ERK inhibitor PD98059 and antioxidant N-acetyl-L-cysteine restored normal proliferation of Atm(-/-) astrocytes. These results suggest that ATM is required for normal astrocyte growth through its ability to stabilize intracellular redox status and that the inability to control ROS is the molecular basis of limited cell growth of Atm(-/-) astrocytes. This defect may be mediated by a mechanism involving ERK1/2 activation and Bmi-1 derepression of p16Ink4a. These data identify new potential targets for therapeutic intervention in A-T neurodegeneration.
引用
收藏
页码:14396 / 14404
页数:9
相关论文
共 54 条
[1]   Atm-deficient mice: A paradigm of ataxia telangiectasia [J].
Barlow, C ;
Hirotsune, S ;
Paylor, R ;
Liyanage, M ;
Eckhaus, M ;
Collins, F ;
Shiloh, Y ;
Crawley, JN ;
Ried, T ;
Tagle, D ;
WynshawBoris, A .
CELL, 1996, 86 (01) :159-171
[2]   Low molecular weight thiol amides attenuate MAPK activity and protect primary neurons from Aβ(142) toxicity [J].
Bartov, O ;
Sultana, R ;
Butterfield, DA ;
Atlas, D .
BRAIN RESEARCH, 2006, 1069 (01) :198-206
[3]   DNA damage responses to oxidative stress [J].
Barzilai, A ;
Yamamoto, KI .
DNA REPAIR, 2004, 3 (8-9) :1109-1115
[4]   ROS, stress-activated kinases and stress signaling in cancer [J].
Benhar, M ;
Engelberg, D ;
Levitzki, A .
EMBO REPORTS, 2002, 3 (05) :420-425
[5]   Redox modifications of protein-thiols: Emerging roles in cell signaling [J].
Biswas, S ;
Chida, AS ;
Rahman, I .
BIOCHEMICAL PHARMACOLOGY, 2006, 71 (05) :551-564
[6]   Treatment with a catalytic antioxidant corrects the neurobehavioral defect in ataxia-telangiectasia mice [J].
Browne, SE ;
Roberts, LJ ;
Dennery, PA ;
Doctrow, SR ;
Beal, MF ;
Barlow, C ;
Levine, RL .
FREE RADICAL BIOLOGY AND MEDICINE, 2004, 36 (07) :938-942
[7]   Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice [J].
Bruggeman, SWM ;
Valk-Lingbeek, ME ;
van der Stoop, PPM ;
Jacobs, JJL ;
Kieboom, K ;
Tanger, E ;
Hulsman, D ;
Leung, C ;
Arsenijevic, Y ;
Marino, S ;
van Lohuizen, M .
GENES & DEVELOPMENT, 2005, 19 (12) :1438-1443
[8]   Cysteine redox sensor in PKGIα enables oxidant-induced activation [J].
Burgoyne, Joseph R. ;
Madhani, Melanie ;
Cuello, Friederike ;
Charles, Rebecca L. ;
Brennan, Jonathan P. ;
Schroeder, Ewald ;
Browning, Darren D. ;
Eaton, Philip .
SCIENCE, 2007, 317 (5843) :1393-1397
[9]   Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity [J].
Campese, VM ;
Ye, SH ;
Zhong, HQ ;
Yanamadala, V ;
Ye, Z ;
Chiu, J .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2004, 287 (02) :H695-H703
[10]  
Chen P, 2003, J NEUROSCI, V23, P11453