Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh-Benard convection

被引:81
作者
Doering, Charles R. [1 ]
Otto, Felix
Reznikoff, Maria G.
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1017/S0022112006000097
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
For the infinite-Prandtl-number limit of the Boussinesq equations, the enhancement of vertical heat transport in Rayleigh-Bernard convection, the Nusselt number Nu, is bounded above in terms of the Rayleigh number Ra according to Nu <= 0.644 x Ra-1/3 [log Ra](1/3) as Ra --> infinity. This result follows from the utilization of a novel logarithmic profile in the background method for producing bounds on bulk transport, together with new estimates for the bi-Laplacian in a weighted L-2 space. It is a quantitative improvement of the best currently available analytic result, and it comes within the logarithmic factor of the pure 1/3 scaling anticipated by both the classical marginally stable boundary layer argument and the most recent high-resolution numerical computations of the optimal bound on Nu using the background method.
引用
收藏
页码:229 / 241
页数:13
相关论文
共 35 条
[1]   Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number [J].
Amati, G ;
Koal, K ;
Massaioli, F ;
Sreenivasan, KR ;
Verzicco, R .
PHYSICS OF FLUIDS, 2005, 17 (12) :1-4
[2]   Effect of inertia in Rayleigh-Benard convection [J].
Breuer, M ;
Wessling, S ;
Schmalzl, J ;
Hansen, U .
PHYSICAL REVIEW E, 2004, 69 (02) :026302-1
[3]   The Optimum Theory of Turbulence [J].
Busse, F.H. .
Advances in Applied Mechanics, 1979, 18 (0C) :77-121
[4]   ON HOWARDS UPPER BOUND FOR HEAT TRANSPORT BY TURBULENT CONVECTION [J].
BUSSE, FH .
JOURNAL OF FLUID MECHANICS, 1969, 37 :457-&
[5]  
CHAN SK, 1971, STUD APPL MATH, V50, P13
[6]   Observation of the ultimate regime in Rayleigh-Benard convection [J].
Chavanne, X ;
Chilla, F ;
Castaing, B ;
Hebral, B ;
Chabaud, B ;
Chaussy, J .
PHYSICAL REVIEW LETTERS, 1997, 79 (19) :3648-3651
[7]   Ultimate regime in Rayleigh-Benard convection:: The role of plates [J].
Chillà, F ;
Rastello, M ;
Chaumat, S ;
Castaing, B .
PHYSICS OF FLUIDS, 2004, 16 (07) :2452-2456
[8]   Infinite Prandtl number convection [J].
Constantin, P ;
Doering, CR .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) :159-172
[9]   Variational bounds on energy dissipation in incompressible flows .3. Convection [J].
Doering, CR ;
Constantin, P .
PHYSICAL REVIEW E, 1996, 53 (06) :5957-5981
[10]   ENERGY-DISSIPATION IN SHEAR DRIVEN TURBULENCE [J].
DOERING, CR ;
CONSTANTIN, P .
PHYSICAL REVIEW LETTERS, 1992, 69 (11) :1648-1651