Limits of sympathetic cooling of fermions by zero-temperature bosons due to particle losses

被引:12
作者
Carr, LD [1 ]
Bourdel, T [1 ]
Castin, Y [1 ]
机构
[1] Ecole Normale Super, Lab Kastler Brossel, F-75231 Paris 05, France
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.69.033603
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It has been suggested by Timmermans [Phys. Rev. Lett. 87, 240403 (2001)] that loss of fermions in a degenerate system causes strong heating. We address the fundamental limit imposed by this loss on the temperature that may be obtained by sympathetic cooling of fermions by bosons. Both a quantum Boltzmann equation and a quantum Boltzmann master equation are used to study the evolution of the occupation number distribution. It is shown that, in the thermodynamic limit, the Fermi gas cools to a minimal temperature k(B)T/muproportional to(gamma(loss)/gamma(coll))(0.44), where gamma(loss) is a constant loss rate, gamma(coll) is the bare fermion-boson collision rate not including the reduction due to Fermi statistics, and musimilar tok(B)T(F) is the chemical potential. It is demonstrated that, beyond the thermodynamic limit, the discrete nature of the momentum spectrum of the system can block cooling. The unusual nonthermal nature of the number distribution is illustrated from several points of view: the Fermi surface is distorted, and in the region of zero momentum the number distribution can descend to values significantly less than unity. Our model explicitly depends on a constant evaporation rate, the value of which can strongly affect the minimum temperature.
引用
收藏
页码:033603 / 1
页数:14
相关论文
共 27 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   Quantum field theory of dilute homogeneous Bose-Fermi mixtures at zero temperature: General formalism and beyond mean-field corrections [J].
Albus, AP ;
Gardiner, SA ;
Illuminati, F ;
Wilkens, M .
PHYSICAL REVIEW A, 2002, 65 (05) :15
[3]   Collective laser cooling of trapped atoms [J].
Cirac, JI ;
Lewenstein, M ;
Zoller, P .
EUROPHYSICS LETTERS, 1996, 35 (09) :647-651
[4]  
Cohen-Tannoudji C., 1998, ATOM PHOTON INTERACT
[5]   Onset of Fermi degeneracy in a trapped atomic gas [J].
DeMarco, B ;
Jin, DS .
SCIENCE, 1999, 285 (5434) :1703-1706
[6]   Quantum kinetic theory: A quantum kinetic master equation for condensation of a weakly interacting Bose gas without a trapping potential [J].
Gardiner, CW ;
Zoller, P .
PHYSICAL REVIEW A, 1997, 55 (04) :2902-2921
[7]   All-optical production of a degenerate Fermi gas [J].
Granade, SR ;
Gehm, ME ;
O'Hara, KM ;
Thomas, JE .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4
[8]   Fiftyfold improvement in the number of quantum degenerate fermionic atoms [J].
Hadzibabic, Z ;
Gupta, S ;
Stan, CA ;
Schunck, CH ;
Zwierlein, MW ;
Dieckmann, K ;
Ketterle, W .
PHYSICAL REVIEW LETTERS, 2003, 91 (16)
[9]   Two-species mixture of quantum degenerate Bose and Fermi gases -: art. no. 160401 [J].
Hadzibabic, Z ;
Stan, CA ;
Dieckmann, K ;
Gupta, S ;
Zwierlein, MW ;
Görlitz, A ;
Ketterle, W .
PHYSICAL REVIEW LETTERS, 2002, 88 (16) :4
[10]   Evaporative cooling of a two-component degenerate Fermi gas [J].
Holland, MJ ;
DeMarco, B ;
Jin, DS .
PHYSICAL REVIEW A, 2000, 61 (05) :6