Isochores exhibit evidence of genes interacting with the large-scale genomic environment

被引:7
作者
Press, William H.
Robins, Harlan
机构
[1] Los Alamos Natl Lab, Grp CCS6, Los Alamos, NM 87545 USA
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
关键词
EVOLUTIONARY TREES; DROSOPHILA-MELANOGASTER; MAXIMUM-LIKELIHOOD; CODON BIAS; DNA; EXPRESSION; SEQUENCES;
D O I
10.1534/genetics.105.054445
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The genomes of mammals and birds can be partitioned into megabase-long regions, termed isochores, with consistently high, or low, average C + G content. Isochores with high CG contain a mixture of CG-rich and AT-rich genes, while high-AT isochores contain predominantly AT-rich genes. The two gene populations in the high-CG isochores are functionally distingnishable by statistical analysis of their gene ontology categories. However, the aggregate of the two populations in CG isochores is not statistically distinct from AT-rich genes in AT isochores. Genes tend to be located at local extrema of composition within the isochores, indicating that the CG-enriching mechanism acted differently when near to genes. On the other hand, maximum-likelihood reconstruction of molecular phylogenetic trees shows that branch lengths (evolutionary distances) for third codon positions in CG-rich genes are not substantially larger than those for AT-rich genes. In the context of neutral mutation theory this argues against any strong Positive selection. Disparate features of isochores might be explained by a model in which about half of all genes functionally require AT richness, while, in warm-blooded organisms, about half the genome (in large coherent blocks) acquired a strong bias for mutations to CG. Using mutations in CG-rich genes as convenient indicators, we show that approximate to 20% of amino acids in Proteins are broadly, substitutable, without regard to chemical similarity.
引用
收藏
页码:1029 / 1040
页数:12
相关论文
共 33 条
[1]  
AKASHI H, 1994, GENETICS, V136, P927
[2]  
Akashi H, 1996, GENETICS, V144, P1297
[3]   What can and what cannot be inferred from pairwise sequence comparisons? [J].
Baake, E .
MATHEMATICAL BIOSCIENCES, 1998, 154 (01) :1-21
[4]   The decline of isochores in mammals: An assessment of the GC content variation along the mammalian phylogeny [J].
Belle, EMS ;
Duret, L ;
Galtier, N ;
Eyre-Walker, A .
JOURNAL OF MOLECULAR EVOLUTION, 2004, 58 (06) :653-660
[5]   Analysis of the phylogenetic distribution of isochores in vertebrates and a test of the thermal stability hypothesis [J].
Belle, EMS ;
Smith, N ;
Eyre-Walker, A .
JOURNAL OF MOLECULAR EVOLUTION, 2002, 55 (03) :356-363
[6]   Isochores and the evolutionary genomics of vertebrates [J].
Bernardi, G .
GENE, 2000, 241 (01) :3-17
[7]   THE MOSAIC GENOME OF WARM-BLOODED VERTEBRATES [J].
BERNARDI, G ;
OLOFSSON, B ;
FILIPSKI, J ;
ZERIAL, M ;
SALINAS, J ;
CUNY, G ;
MEUNIERROTIVAL, M ;
RODIER, F .
SCIENCE, 1985, 228 (4702) :953-958
[8]  
Betts MJ., 2003, BIOINFORMATICS GENET, P289, DOI DOI 10.1002/0470867302.CH14
[9]   Ensembl 2006 [J].
Birney, E. ;
Andrews, D. ;
Caccamo, M. ;
Chen, Y. ;
Clarke, L. ;
Coates, G. ;
Cox, T. ;
Cunningham, F. ;
Curwen, V. ;
Cutts, T. ;
Down, T. ;
Durbin, R. ;
Fernandez-Suarez, X. M. ;
Flicek, P. ;
Graf, S. ;
Hammond, M. ;
Herrero, J. ;
Howe, K. ;
Iyer, V. ;
Jekosch, K. ;
Kahari, A. ;
Kasprzyk, A. ;
Keefe, D. ;
Kokocinski, F. ;
Kulesha, E. ;
London, D. ;
Longden, I. ;
Melsopp, C. ;
Meidl, P. ;
Overduin, B. ;
Parker, A. ;
Proctor, G. ;
Prlic, A. ;
Rae, M. ;
Rios, D. ;
Redmond, S. ;
Schuster, M. ;
Sealy, I. ;
Searle, S. ;
Severin, J. ;
Slater, G. ;
Smedley, D. ;
Smith, J. ;
Stabenau, A. ;
Stalker, J. ;
Trevanion, S. ;
Ureta-Vidal, A. ;
Vogel, J. ;
White, S. ;
Woodwark, C. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D556-D561
[10]   Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency [J].
Chang, JT .
MATHEMATICAL BIOSCIENCES, 1996, 137 (01) :51-73