Group theoretical quantization of Schwarzschild and Taub-NUT

被引:5
作者
Hollmann, H
机构
[1] Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 Munich
关键词
D O I
10.1016/S0370-2693(96)01221-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Stationary spherically symmetric gravity is equivalent to a nonlinear coset sigma model on SL(2,R)/S0(2) coupled to a gravitational remnant. Classically there are stationary solutions besides the static Schwarzschild metric labeled by the Schwarzschild mass m and the Taub-NUT charge l. Imposing the SL(2,R) symmetry at the quantum level the Wheeler-DeWitt equation becomes related to the Casimir operator on the coset, which makes the system amenable to exact quantization.
引用
收藏
页码:702 / 706
页数:5
相关论文
共 15 条
[1]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[2]   4-DIMENSIONAL BLACK-HOLES FROM KALUZA-KLEIN THEORIES [J].
BREITENLOHNER, P ;
MAISON, D ;
GIBBONS, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (02) :295-333
[3]  
BREITENLOHNER P, SOLITONS KALUZA KLEI
[4]   Hamiltonian formalism for black holes and quantization [J].
Cavaglia, Marco ;
de Alfaro, Vittorio ;
Filippov, Alexandre T. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1995, 4 (05) :661-672
[5]  
Chandrasekhar S., 1983, The mathematical theory of black holes
[6]  
DAMOUR T, 1986, GRAVITATIONAL RAD
[7]   STATIONARY, SPHERICALLY SYMMETRIC-SOLUTIONS OF JORDAN UNIFIED THEORY OF GRAVITY AND ELECTROMAGNETISM [J].
DOBIASCH, P ;
MAISON, D .
GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (03) :231-242
[8]   ELEMENTARY RELATIVISTIC WAVE MECHANICS OF SPIN 0 AND SPIN 1/2 PARTICLES [J].
FESHBACH, H ;
VILLARS, F .
REVIEWS OF MODERN PHYSICS, 1958, 30 (01) :24-45
[9]  
Fulop T, 1996, J MATH PHYS, V37, P1617, DOI 10.1063/1.531472
[10]  
Kaluza T, 1921, SITZBER K PREUSS AKA, P966